نتائج البحث

اذهب إلى التنقل اذهب إلى البحث

تبديل التابع إلى كائن التابع (Replace Method with Method Object)

المشكلة وجود تابعٍ طويلٍ بالكثير من المتغيِّرات المحليّة (local variables) المتداخلة والتي تحول دون تطبيق تقنية الحل باستخراج التابع (extract method). الحل نقل التابع إلى صنفٍ (class) مستقلٍ بحيث تصبح متغيِّراته المحليّة حقولًا (fields) لهذا الصنف، وتقسيم التابع بعد ذلك إلى عدّة توابع أصغر في الصنف ذاته. مثال قبل إعادة التصميم نلاحظ وجود العديد من المتغيِّرات المحليّة في التابع price()‎ بالإضافة إلى عملياتٍ أخرى قد تكون طويلةً ومعقَّدة: في لغة Java: class Order { //... public double price() ...

دمج التوابع (Inline Methods)

المشكلة أن يكون محتوى التابع (method body) بسيطًا وواضحًا أكثر من التابع بحدِّ ذاته، ويمكن عندئذٍ الاستغناء عنه. الحل نقل الشيفرة الموجودة في التابع (محتوى التابع) إلى مواقع استدعائه، وحذف التابع برمته إذ لا داعي له. مثال قبل إعادة التصميم نلاحظ أن محتوى التابع moreThanFiveLateDeliveries()‎ واضحٌ وبسيطٌ لدرجةٍ تجعل الاستغناء عنه ممكنًا: في لغة Java: class PizzaDelivery { //... int getRating() { return moreThanFiveLateDeliveries() ? 2 : 1; } boolean moreThanFiveLateDeliveries() { ...

استخراج التوابع (Extract Methods)

المشكلة وجود أجزاء من الشيفرة يُمكن عزلها وتجميعها سويةً. الحل نقل الشيفرة إلى تابعٍ (method) أو دالةٍ (function) جديدة والاستعاضة عن الجزء (بمكانه السابق) باستدعاءٍ لهذا التابع الجديد. مثال قبل إعادة التصميم نلاحظ وجود جزء من الشيفرة لطباعة بعض البيانات (التفاصيل)، والتي يمكن عزلها بتابعٍ جديد، الشيفرة قبل إعادة التصميم بالشكل: في لغة Java: void printOwing() { printBanner(); // طباعة التفاصيل System.out.println("name: " + name); System.out.println("amount: " + getOutstanding()); } في لغة #C: void PrintOwing() { PrintBanner(); ...

الصنف Method في روبي

يتم إنشاء كائنات الصنف Method بواسطة التابع Object.method، وترتبط بكائن معين (وليس بالصنف وحسب). ويمكن استخدامها لاستدعاء التابع داخل الكائن، أو ككتلة (block) مرتبطة بمكرر (iterator). كما يمكن فك ارتباطها (unbound) من كائن محدد (سيؤدي ذلك إلى إنشاء الكائن UnboundMethod) ثم ربطها بآخر. class Thing def square(n) n*n end end thing = Thing.new meth = thing.method(:square) meth.call(9) #=> 81 [ 1, 2, 3 ...

تعريف التوابع الدخيلة (Introduce Foreign Methods)

المشكلة الحاجة إلى تابعٍ غير موجودٍ في الصنف المساعد (utility class) ومن غير الممكن إضافته إلى ذلك الصنف. الحل إضافة التابع المطلوب إلى صنف العميل (client class) وتمرير كائنٍ (object) من الصنف المساعد إليه كوسيط (argument). مثال قبل إعادة التصميم يحتوي الصنف Report تابعًا باسم sendReport والذي يستخدم الصنف المساعد Date لإنشاء تاريخ اليوم التالي عبر إضافة القيمة 1 إلى اليوم الحالي، كما يلي: في لغة Java: class Report { //... void sendReport() { Date ...

إنشاء التوابع (Composing Methods)

تستهدف إعادة التصميم بشكل رئيسيٍّ إنشاء التوابع الصحيحة المناسبة، إذ تكون التوابع الطويلة سببًا للمشاكل في كثيرٍ من الحالات، وتجعل شيفرات بعض التوابع منطق التنفيذ (execution logic) غامضًا ويصبح التابع بهذا عصيَّ الفهم من جهةٍ وصعب التغييرٍ من جهة ثانية. يشمل هذا القسم من الحلول كلَّ ما يتعلق بالتوابع وإزالة التكرار (duplicates) في الشيفرة ليسمح بإجراء التطويرات المستقبليّة، وهذه التقنيات هي: استخراج التوابع (Extract Methods) المشكلة: وجود أجزاء من الشيفرة يُمكن عزلها وتجميعها سويةً. الحل: نقل الشيفرة إلى تابعٍ (method) ...

نقل التابع (Move Method)

المشكلة استخدام التابع (method) في صنفٍ (class) ما أكثر من استخدامه في صنفه الأساسيّ. الحل إنشاء تابعٍ جديدٍ في الصنف الأكثر استخدامًا لذلك التابع ونقل شيفرته إلى التابع الجديد، ثم تحويل الشيفرة في التابع الأصليّ إلى مرجعيّةٍ للتابع الجديد في الصنف الآخر أو حذفه كليَّا. مثال قبل إعادة التصميم يستخدِم الصنفُ Class2 التابعَ aMethod()‎ أكثر مما يستخدمه صنفه الأساسيّ Class1: يستخدِم الصنفُ Class2 التابعَ aMethod()‎ أكثر مما يستخدمه صنفه الأساسيّ Class1. بعد إعادة التصميم نُقِل التابع aMethod()‎ إلى الصنف ذي ...

إخفاء التابع (Hide Method)

المشكلة لا يُستخدم التابع من قِبل الأصناف الأخرى أو يستخدم فقط داخل التسلسل الهرمي للصنف الخاص به. الحل جعل التابع خاصًا أو محميًا. مثال قبل إعادة التصميم لا يستخدم التابع ()aMethod من قبل أصناف أخرى غير الصنف Employee المعرف فيه: لا يُستخدم التابع من قِبل الأصناف الأخرى أو يستخدم فقط داخل التسلسل الهرمي للصنف الخاص به. بعد إعادة التصميم جعل التابع ()aMethod خاصًّا ومحميًّا بإخفائه عن الأصناف الأخرى: جعل التابع خاصًا أو محميًا. لم إعادة التصميم؟ في كثير من الأحيان، ...

إنشاء التوابع (Composing Methods)

تستهدف إعادة التصميم بشكل رئيسيٍّ إنشاء التوابع الصحيحة المناسبة، إذ تكون التوابع الطويلة سببًا للمشاكل في كثيرٍ من الحالات، وتجعل شيفرات بعض التوابع منطق التنفيذ (execution logic) غامضًا ويصبح التابع بهذا عصيَّ الفهم من جهةٍ وصعب التغييرٍ من جهة ثانية. يشمل هذا القسم من الحلول كلَّ ما يتعلق بالتوابع وإزالة التكرار (duplicates) في الشيفرة ليسمح بإجراء التطويرات المستقبليّة، وهذه التقنيات هي: استخراج التوابع (Extract Methods) المشكلة: وجود أجزاء من الشيفرة يُمكن عزلها وتجميعها سويةً. الحل: نقل الشيفرة إلى تابعٍ (method) ...

التوابع الطويلة (Long Methods)

توصيف المشكلة تنتُج هذه المشكلة عن احتواء شيفرة التابع على الكثير من الأسطر؛ فهو أمرٌ يدعو للتساؤل حقًا إن كان التابع بأكثر من 10 أسطر! لِمَ؟ أسبابها إنَّ ما يحدث دائمًا أنْ يُضاف للتابع لا أن يُحذَف منه! وذلك لسهولة كتابة الإضافات للشيفرة مقارنةً مع قراءتها، ولن تظهر هذه المشكلة واضحةً إلا بعد تفاقمها ووصولها لحدِ لا يُحتمَل، وكذلك يجد المبرمج أنَّ كتابة تابعٍ جديدٍ أكثرُ مشقّةً من الإضافة لتابعٍ موجودٍ مسبقًا، إذ يفكر: "هما سطران وحسب، ولا داعي لتخصيص ...

الدالة weakref.WeakMethod()‎ في بايثون

صنف فرعي خاصّ من الصنف ref يحاكي إشارة ضعيفة إلى تابع مرتبط bound method (أي تابع معرف في صنف وجرى البحث عنه في نسخة من ذلك الصنف). ملاحظة: هذا الصنف جديد في الإصدار 3.4. البنية العامة class weakref.WeakMethod(method) المعاملات dict التابع المراد إنشاء محاكاة لإشارة ضعيفة إليه. التوابع المرتبطة سريعة الزوال ما يمنع من تمسّك الإشارات الضعيفة العادية بها. يمتلك الصنف WeakMethod طريقة خاصة لإعادة إنشاء التابع المرتبط والإبقاء عليه إلى أن يموت الكائن أو الدالة الأصلية: >>> class C: ... ...

استبدال المعامل بتوابع صريحة (Replace Parameter with Explicit Methods)

المشكلة ينقسم التابع إلى أجزاء، كل منها يتم تشغيله اعتمادًا على قيمة المعامل. الحل استخراج الأجزاء الفردية من التابع إلى توابعها الخاصة واستدعائها بدلًا من استدعاء التابع الأصلي. مثال قبل إعادة التصميم وجود تابع يدعى ()setValue يضبط قيمة الارتفاع والعرض بناءً على تمرير سلسلة نصية صريحة بذلك: في لغة Java: void setValue(String name, int value) { if (name.equals("height")) { height = value; return; } if (name.equals("width")) { width ...

تبديل المعاملات باستدعاءات التوابع (Replace Parameter with Method Call)

المشكلة استدعاء تابع استعلام (query method) وتمرير نتائجه كمعاملات لتابع آخر، في حين أنه يمكن لهذا التابع استدعاء الاستعلام مباشرة. الحل بدلًا من تمرير القيمة من خلال المعامل، حاول وضع استدعاء الاستعلام داخل متن التابع. مثال قبل إعادة التصميم تخزين القيمة التي يعيدها كلٌّ من التابعين ()getSeasonalDiscount و ()getFees في متغير ثم تمريرها إلى التابع ()discountedPrice: في لغة Java: int basePrice = quantity * itemPrice; double seasonDiscount = this.getSeasonalDiscount(); double fees = this.getFees(); double finalPrice = discountedPrice(basePrice, seasonDiscount, fees); في لغة C#‎: int basePrice ...

تحويل التوابع إلى معاملات (Parameterize Method)

المشكلة تؤدي توابع متعددة أعمالًا مماثلة تختلف فقط من حيث قيمها الداخلية أو أرقامها أو عملياتها. الحل تجميع هذه التوابع باستخدام معامل يُمرر القيمة الخاصة الضرورية. مثال قبل إعادة التصميم يؤدي التابعان ()fivePercentRaise و ()tenPercentRaise الغرض ذاته باختلاف النسبة المئوية المراد زيادتها للموظف Employee: يؤدي التابعان أعمالًا مماثلة تختلف فقط من حيث قيمها الداخلية أو أرقامها أو عملياتها. بعد إعادة التصميم تجميع التابعان السابقان في تابع واحد يدعى ()raise مع تمرير النسبة المئوية المتغيرة إليه: يجمع التابعين باستخدام معامل يُمرر ...

المعامل ===‎ الخاص بالصنف Method في روبي

يستدعي المعامل === كتلة التابع مع تمرير الكائن الواقع على يمينه كوسيط إلى المعامل الواقع على يساره كما هو الحال في Proc.call. هذا يَسمح لكائنٍ من النوع proc أن يكون هدفًا للكتلة when في التعليمة case. البنية العامة proc === obj→ result_of_proc‎ القيمة المعادة تعاد نتيجة الوسيط proc. انظر أيضا التابع ==: يتحقق من تساوي كائنين من النوع Method. مصادر قسم التابع ===‎ في الصنف Method‎ في توثيق روبي الرسمي.

إعادة تسمية التوابع (Rename Method)

المشكلة لا يعبِّر اسم التابع عن ما يقوم به. الحل إعادة تسمية التابع. مثال قبل إعادة التصميم لا يفسر اسم التابع ()getsnm في الصنف Customer ما يقوم به. لا يفسر اسم التابع ما يقوم به. بعد إعادة التصميم إعادة تسمية التابع ()getsnm إلى ()getSecondName الذي يصف ما يقوم به. يفسر اسم التابع ما يقوم به. لم إعادة التصميم؟ ربما كانت تسمية تابعٍ ما سيئة من البداية - على سبيل المثال، أنشأ شخصٌ ما التابع في عجلة ولم يهتم كفاية بتسميته ...

المعامل ‎[]‎‎ الخاص بالصنف Method في روبي

يستدعي معامل الفهرسة [] الكتلة البرمجية للتابع، ويضبط قيم معاملات الكتلة عند القيم المعطاة ضمنه باستخدام صياغة مشابهة لاستدعاء التوابع ثم يعيد قيمة آخر تعبير تم تقييمه في الكتلة. لاحظ أنَّ ‎prc.()‎ يستدعي prc.call()‎ مع تمرير الوسائط المعطاة. وهي صياغة مختصرة لإخفاء التابع "call". بالنسبة للكائنات procs التي تم إنشاؤها باستخدام lambda أو ‎->()‎‎‎، سيُطلق خطأ إذا كان عدد المعاملات الممررة إلى proc غير صحيح. بالنسبة للكائنات proc التي تم إنشاؤها باستخدام Proc.new أو Kernel.proc، سيتم تجاهل المعاملات الإضافية بصمت، ...

المعامل ==‎ الخاص بالصنف Method في روبي

يتحقق المعامل == من تساوي كائنين من النوع Method. يكون كائنان من النوع Method متساويين إن كانا مرتبطين بنفس الكائن، وكانا لهما نفس التعريف، وكان لهما نفس الصنف أو الوحدة (module) المالكة. البنية العامة meth == other_meth → true or false‎ القيمة المعادة تُعاد القيمة true إن كان الكائنان متساويين، وإلا فستُعاد القيمة false. انظر أيضا التابع ===: يستدعي كتلة التابع مع تمرير الكائن الواقع على يمينه كوسيط إلى المعامل الواقع على يساره كما هو الحال في Proc.call. مصادر قسم ...

التابع bytes.rpartition()‎ في بايثون

يقسم هذا التابع البيانات الثنائية عند آخر ظهور للقيمة التي يحدّدها المستخدم. البنية العامة str.rpartition(sep) المعاملات sep يحدّد هذا المعامل الفاصل الذي سيعتمده التابع في تقسيم البيانات الثنائية. القيمة المعادة يعيد هذا التابع صفًّا مكوّنًا من ثلاثة عناصر، الأول هو جزء السلسلة الذي يسبق الفاصل، والثاني هو الفاصل نفسه أو نسخة عنه من نوع مصفوفة البايتات، والثالث هو الجزء الذي يلي الفاصل. في حال عدم العثور على الفاصل يعيد التابع صفًّا مكوّنًا من ثلاثة عناصر، الأوّل هو نسخة من التسلسل ...

التابع bytes.rpartition()‎ في بايثون

يقسم هذا التابع البيانات الثنائية عند آخر ظهور للقيمة التي يحدّدها المستخدم. البنية العامة str.rpartition(sep) المعاملات sep يحدّد هذا المعامل الفاصل الذي سيعتمده التابع في تقسيم البيانات الثنائية. القيمة المعادة يعيد هذا التابع صفًّا مكوّنًا من ثلاثة عناصر، الأول هو جزء السلسلة الذي يسبق الفاصل، والثاني هو الفاصل نفسه أو نسخة عنه من نوع مصفوفة البايتات، والثالث هو الجزء الذي يلي الفاصل. في حال عدم العثور على الفاصل يعيد التابع صفًّا مكوّنًا من ثلاثة عناصر، الأوّل هو نسخة من التسلسل ...

الدالة staticmethod()‎ في بايثون

تُحوّل الدّالة staticmethod()‎ تابعًا إلى تابعٍ ساكن (static method). البنية العامة staticmethod(fun) @staticmethod المعاملات fun الدّالة أو التّابع المُراد تحويله إلى تابعٍ ساكن. القيمة المعادة يُحوّل التّابع المُزخرَف إلى تابعٍ ساكن لا يستقبل مُعاملًا أولًا صريحًا (المُعامل المعروف بالاسم self في التّوابع). أمثلة المثال التّالي يوضّح كيفيّة إنشاء تابع ساكن باستعمال الدّالة staticmethod كمُزخرِف: >>> class A: ... @staticmethod ... def hello(): # لاحظ أنّ التّابع السّاكن لا يستقبل أيّ مُعامل تلقائيّ كما في التّوابع ...

الوحدة functools‎ في بايثون

تُقدّم الوحدة functools دوال عاليّة الرّتبة (higher-order functions)، وهي دوال تستقبل دوالا أخرى، تُغيّرها، أو تُعيد دوال أخرى. وعلى العموم، يُمكن لأيّ كائن قابل للاستدعاء أن يُعامل مُعاملة الدّالة عند استخدام هذه الوحدة. تُعرّف الوحدة functools الدّوال التّاليّة: functools.cmp_to_key()‎ تُحوّل دالّةَ مُقارنة (comparison function) إلى دالّة مفتاح (key function). functools.partial()‎ تُستعمل لإنشاء دالّة جزئيّة من دالّة بتمرير قيم افتراضيّة ثابتة لها. functools.reduce()‎ تُطبّق دالّةً تأخذ مُعاملين بتراكب لعناصر الكائن القابل للتّكرار المُعطى، من اليسار إلى اليمين لتخفيض العناصر إلى قيمة ...

الدالة super()‎ في بايثون

تعيد الدّالة super()‎ كائنًا وسيطًا يُفوّض استدعاءات التّوابع إلى صنف أبٍ أو صنف شقيق للصّنف الذي استُدعيَت منه الدّالة. هذا مُفيد للوصول إلى التّوابع الموروثة التي أعيدت كتابتها في صنف مُعيّن. ترتيب البحث يكون هو نفسه التّرتيب المُستخدم من طرف الدّالة getattr()‎ لكنّ النّوع type‎ المُعطى يُتجاهَل. البنية العامة super([type[, object-or-type]]) المعاملات type النّوع الذي ستقوم الدّالة super()‎ بتفويض استدعاءات التّوابع إلى صنف أبٍ أو صنف شقيق له. تعرض الخاصيّة __mro__ الخاصّة بالصّنف type ترتيب البحث عن التوابع (method resolution ...

الدالة functools.partialmethod()‎ في بايثون

تعيد الدّالة functools.partialmethod()‎ واصفًا يتصرّف مثل كائنات partial، إلّا أنّه مُصمّم ليُستخدم كتعريف تابع (method definition) عوضًا عن أن يكون قابلا للاستدعاء (callable) مُباشرة. البنية العامة functools.partialmethod(func, *args, **keywords) المعاملات func واصفٌ أو كائن قابل للاستدعاء (تُعامل الكائنات التي تجتمع فيها الصّفتان على أنّها واصفات، مثل الدّوال). عندما يكون func واصفًا (مثل دالّة بايثون عاديّة، أو الدّالة classmethod()‎، أو الدّالة staticmethod()‎، أو نسخة أخرى من partialmethod)، فستُفوّض استدعاءات الخاصيّة ‎__get__‎ إلى الواصف المنشأ، وسيُعاد كائن partial كنتيجة. عندما يكون func ...

التابع ZipFile.writestr()‎‎ في بايثون

يكتب التابع البيانات النصية المعطاة في الأرشيف. البنية العامة ZipFile.writestr(zinfo_or_arcname, data, compress_type=None, compresslevel=None) ‎المعاملات ‎zinfo_or_arcname يأخذ هذا المعامل إحدى قيمتين، فإمّا أن يكون اسم الملف في الأرشيف، أو نسخة من الصنف ZipInfo. في حال كانت القيمة المعطاة هي نسخة من الصنف فيجب على الأقل تعيين قيمة للمعاملات filename و date و time على الأقل. أما إن كانت القيمة المعطاة هي اسم الملف، فسيعتمد التابع الوقت والتاريخ الحاليين. يجب أن يكون الأرشيف مفتوحًا في الوضع 'w' أو 'x' أو 'a'. compress_type ...

ازالة توابع الإعدادات (Remove Setting Method)

المشكلة يكون تعيين قيمة الحقل فقط عند إنشائه، ولا تتغير في أي وقت لاحق. الحل إزالة التوابع التي تضبط قيمة الحقل. مثال قبل إعادة التصميم يضبط التابع ()setImmutableValue قيمةً غير قابلة للتغيير أو التعديل في المستقبل: يغيّر التابع من قيمة الحقل. بعد إعادة التصميم حذف التابع ()setImmutableValue من الصنف Customer: إزالة التابع الذي يضبط قيمة الحقل. لم إعادة التصميم؟ إذا كنت تريد منع أي تغييرات في قيمة الحقل. آلية الحل يجب أن تكون قيمة الحقل قابلة للتغيير فقط في الباني. ...

تبسيط استدعاءات التوابع (Simplifying Method Calls)

تجعل التقنيات التي سيشار إليها في هذا القسم استدعاءات التوابع أبسط وأسهل للفهم والاستيعاب. سيؤدي ذلك بدوره إلى تبسيط الواجهات للتفاعل بين الأصناف. هذه التقنيات هي: إعادة تسمية التوابع (Rename Method) المشكلة: لا يعبِّر اسم التابع عن ما يقوم به. الحل: إعادة تسمية التابع. إضافة المعاملات (Add Parameter) المشكلة: لا يملك التابع بيانات كافية لتنفيذ بعض الإجراءات. الحل: إنشاء معامل جديد لتمرير البيانات الضرورية. حذف المعاملات (Remove Parameter) المشكلة: لا يُستخدم معاملٌ ما في متن التابع. الحل: إزالة المعامل غير ...

دفع التابع لأسفل (Push Down Method)

المشكلة هل السلوك المُنفَّذ في الصنف الأب مُستخدمٌ في صنف فرعي واحد فقط (أو أكثر)؟ الحل نقل هذا السلوك إلى الأصناف الفرعية. مثال قبل إعادة التصميم التابع ()getFuel الموجود في الصنف Unit الأب مُستخدم في صنف فرعي واحد فقط الذي هو Tank: التابع الموجود في الصنف الأب مُستخدم في صنف فرعي واحد فقط. بعد إعادة التصميم نقل التابع ()getFuel من الصنف الأب إلى الصنف الفرعي المستخدم فيه: نقل هذا التابع إلى الصنف الفرعي الذي يُستخدم فيه. لم إعادة التصميم؟ في ...

سحب التابع لأعلى (Pull Up Method)

المشكلة تحتوي الأصناف الفرعية على توابع تؤدي نفس العمل. الحل جعل التوابع متطابقة ثم نقلها إلى الصنف الأعلى ذي الصلة. مثال قبل إعادة التصميم يحتوي الصنفان الفرعيان Soldier و Tank على التابع ()getHealth الذي يؤدي نفس العمل: تحتوي الأصناف الفرعية على التابع ()getHealth تؤدي نفس العمل. بعد إعادة التصميم نقل التابع ()getHealth إلى الصنف Unit الأب وإزالته من الأصناف الفرعية: نقل التابع ()getHealth إلى الصنف الأعلى. لم إعادة التصميم؟ تنمو الأصناف الفرعية وتتطور بشكل مستقل عن بعضها البعض، مما يتسبب ...

التابع call‎ الخاص بالصنف Method في روبي

يستدعي call كتلة التابع الذي استٌدعي معه، ويضبط وسائط الكتلة عند القيم المُمرَّرة إليه باستخدام صياغة مشابهة لصياغة استدعاء التوابع ثم يعيد قيمة آخر تعبير تم تقييمه في الكتلة. لاحظ أن ‎prc.()‎ يستدعي prc.call()‎ مع تمرير المعاملات المعطاة. وهي صياغة مختصرة لإخفاء التابع "call". بالنسبة للكائنات procs التي تم إنشاؤها باستخدام lambda أو ‎->()‎‎‎، سيُطلق خطأ إذا كان عدد المعاملات الممررة إلى proc غير صحيح. بالنسبة للكائنات proc التي تم إنشاؤها باستخدام Proc.new أو Kernel.proc ، سيتم تجاهل المعاملات الإضافية ...

الصنف urllib.request.Request‎‎ في بايثون

يعدّ هذا الصنف تجريدًا abstraction لطلب URL. البنية العامة urllib.request.Request(url, data=None, headers={}, origin_req_host=None, unverifiable=False, method=None) المعاملات ‎url يجب أن يكون سلسلة نصية تحتوي على عنوان URL صالح للاستخدام. data يجب أن يكون كائنًا يحدّد المعلومات الإضافية التي ستُرسل إلى المخدّم، أو يحمل القيمة None في حال انتفاء الحاجة إلى إرسال مثل هذه المعلومات. يستخدم هذا المعامل من قبل طلبات HTTP فقط في الوقت الحاضر. أنواع الكائنات المدعومة هي كائنات bytes، والكائنات الشبيهة بالملفات file-like objects، والكائنات القابلة للتكرار iterables. في ...

الأصناف في بايثون

تعدّ الأصناف وسيلة لجمع البيانات والعمليات في بوتقة واحدة، ويؤدي إنشاء صنف جديد إلى تكوين نوع جديد من الكائنات، ما يتيح إنشاء نسخ (instances) من ذلك النوع. يمكن أن ترتبط بكلّ صنف مجموعة من الخاصيات (attributes) التي تساعد في متابعة حالة الصنف، إضافة إلى مجموعة من التوابع (methods) التي تساعد في تعديل حالة ذلك الصنف. لو أجرينا مقارنة بين بايثون ولغات البرمجة الأخرى، سنجد بأنّ بايثون تضيف قدرًا ضئيلًا من الصياغات الجديدة إلى الأصناف؛ إذ تعتمد بايثون الأساليب المتّبعة في ...

الدالة zlib.compressobj()‎ في بايثون

تعيد الدالة كائن ضغط يمكن استخدامه لضغط البيانات التي لا يمكن وضعها في الذاكرة دفعة واحدة. البنية العامة zlib.compressobj(level=-1, method=DEFLATED, wbits=MAX_WBITS, memLevel=DEF_MEM_LEVEL, strategy=Z_DEFAULT_STRATEGY[, zdict]) ‎المعاملات level المعامل level هو عدد صحيح ضمن النطاق 0 إلى 9 أو ‎-1 ووظيفته هي التحكم في مستوى عملية الضغط، فالقيمة 1 تقابل المستوى(Z_BEST_SPEED) وهو الأسرع ويعطي أقل مقدار من الضغط، والقيمة 9تقابل المستوى(Z_BEST_COMPRESSION) وهو الأبطأ وينتج أكبر مقدار من الضغط. أما القيمة 0 فتقابل المستوى (Z_NO_COMPRESSION) فتعني عدم ضغط البيانات. القيمة الافتراضية لهذا المعامل ...

التابع float.hex()‎ في بايثون

يعيد التابع hex()‎ العدد العشري ذا الفاصلة العائمة كسلسلة نصية تتضمن التمثيل الست عشري لذلك العدد. هذا التابع هو تابع نسخة (instance method). الصيغة العامة x.hex() القيمة المعادة يعيد التابع hex()‎ العدد العشري ذا الفاصلة العائمة كسلسلة نصية تتضمن التمثيل الست عشري لذلك العدد. وتتضمن هذه السلسلة النصية - في حال تطبيق الدالة على عدد عشري محدّد - الرمز 0x في بدايتها والحرف p والأس (exponent) في نهايتها. أمثلة يوضّح المثال التالي القيمة المعادة عند استخدام هذا التابع مع الأعداد ...

تعريف الأصناف في بايثون

أبسط صيغة لتعريف الأصناف في بايثون هي: class ClassName:     <statement-1>     .     .     .     <statement-N> تعريف الأصناف كما هو الحال مع عبارات تعريف الدوال (عبارات def) يجب تنفيذ عبارات تعريف الأصناف حتى يكون لها الأثر المطلوب. يمكن تعريف الأصناف في بايثون ضمن عبارات if أو حتى داخل الدوال. عادة ما تستخدم الدوال داخل تعريف الصنف، ولكن من الممكن استخدام أنواع أخرى من العبارات، وتمتلك الدوال داخل الأصناف مجموعة من الوسائط الخاصّة بعملية استدعاء التوابع في بايثون. ...

تعريف الأصناف في بايثون

أبسط صيغة لتعريف الأصناف في بايثون هي: class ClassName:     <statement-1>     .     .     .     <statement-N> تعريف الأصناف كما هو الحال مع عبارات تعريف الدوال (عبارات def) يجب تنفيذ عبارات تعريف الأصناف حتى يكون لها الأثر المطلوب. يمكن تعريف الأصناف في بايثون ضمن عبارات if أو حتى داخل الدوال. عادة ما تستخدم الدوال داخل تعريف الصنف، ولكن من الممكن استخدام أنواع أخرى من العبارات، وتمتلك الدوال داخل الأصناف مجموعة من الوسائط الخاصّة بعملية استدعاء التوابع في بايثون. ...

Python/linecache/lazycache

التابع linecache.lazycache يحصل هذا التابع على المعلومات الكافية عن وحدة غير معتمدة على الملف" non-file-based" بحيث تكون جاهزة لقراءة أسطرها لاحقًا باستخدام التابع getline حتى لو كان المعامل module_globals غير مُسند ضمن معاملات getline، مما يسمح بتجنب عمليات الكتابة والقراءة إلى حين وجود حاجة حقيقية دون الحاجة إلى الاحتفاظ بالمعامل module_globals ضمن الشيفرة البرمجية. البنية العامة linecache.lazycache(filename, module_globals) المعاملات المعامل filename اسم الملف المُراد وضعه بالكاش بطريقة كسولة. المعامل module_globals قاموس (dict) يحتوي على مفتاحين __name__ و __loader__ يُستخدمان ضمن ...

الدالة classmethod()‎ في بايثون

الدّالة classmethod()‎ مُزخرفٌ يُحوّل تابعًا عاديًّا في صنف ما إلى تابع صنف (class method) ليُمكن الوصول إلى الصّنف الذي عُرّف فيه التّابع. يستقبل تابع الصّنفِ الصّنفَ كمُعاملٍ أول، تمامًا كما يستقبل التّابع العاديّ النّسخة (instance) كمُعامل أولٍ (أي الكائن الذي نُشير إليه عادةً بالاسم self). البنية العامة class C: @classmethod def f(cls, arg1, arg2, ...): ... المعاملات لا توجد مُعاملات. لكنّ الدّالة المُزخرَفَة f تستقبل المُعامل cls الذي يُشير إلى الصّنف الذي عُرّف عليه ...

التابع str.partition()‎ في بايثون

يقسم هذا التابع السلسلة النصية عند أول ظهور للقيمة التي يحدّدها المستخدم. البنية العامة x.partition() المعاملات sep يحدّد هذا المعامل الفاصل الذي سيعتمده التابع في تقسيم السلسلة النصية. القيمة المعادة يعيد هذا التابع صفًّا مكوّنًا من ثلاثة عناصر، الأول هو جزء السلسلة الذي يسبق الفاصل، والثاني هو الفاصل نفسه، والثالث هو الجزء الذي يلي الفاصل. في حال عدم العثور على الفاصل تعيد الدالة صفًّا مكوّنًا من ثلاثة عناصر، الأوّل هو السلسلة النصية نفسها، يليها سلسلتان فارغتان. أمثلة يبين المثال التالي ...

التابع str.rpartition()‎ في بايثون

يقسم هذا التابع السلسلة النصية عند آخر ظهور للقيمة التي يحدّدها المستخدم. البنية العامة x.rpartition() المعاملات sep يحدّد هذا المعامل الفاصل الذي سيعتمده التابع في تقسيم السلسلة النصية. القيمة المعادة يعيد هذا التابع صفًّا مكوّنًا من ثلاثة عناصر، الأول هو جزء السلسلة الذي يسبق الفاصل، والثاني هو الفاصل نفسه، والثالث هو الجزء الذي يلي الفاصل. في حال عدم العثور على الفاصل تعيد الدالة صفًّا مكوّنًا من ثلاثة عناصر، الأوّل هو السلسلة النصية نفسها، يليها سلسلتان فارغتان. أمثلة يبين المثال التالي ...

التابع float.fromhex()‎ في بايثون

هذا التابع هو تابع صنف (Class method) يعيد العدد العشري الذي يمكن تمثيله باستخدام السلسلة النصية التي تتضمن الصيغة الست عشرية. البنية العامة x.fromhex() المعاملات s وهو عبارة عن سلسلة نصية تتضمن القيمة الست عشرية المراد تمثيلها بصيغة العدد العشري، وتأخذ القيمة الست عشرية الصيغة التالية: [sign] ['0x'] integer ['.' fraction] ['p' exponent] الإشارة sign هنا اختيارية وتأخذ القيمتين + أو -، أما العدد الصحيح integer والكسر fraction فهما سلسلتان نصيتان تضمّان أعدادًا بالصيغة الست عشرية، والأس هو عدد عشري يمكن ...

الدالة functools.partial()‎ في بايثون

تعيد الدّالة functools.partial()‎ كائن partial يتصرّف كالدّالة المُعطاة عند استدعائها بما مُرّر من مُعاملات (arguments) ومُعاملات كلمات مفتاحيّة (keyword arguments، أي المُعاملات التي تُمرّر مع ذكر أسمائها إضافةً إلى قيمها). إن استُدعيَ الكائن بمُعاملات إضافيّة، فستُضاف إلى مُعاملات الدّالة، و إن استُدعيَ الكائن بمُعاملات كلمات مفتاحيّة إضافيّة، فستُوسّع وتُعوّض معاملات الكلمات المفتاحيّة السّابقة. تُستعمل لإنشاء دالّة جزئيّة من دالّة بتمرير قيم افتراضيّة ثابتة لها. البنية العامة functools.partial(func, *args, **keywords) المعاملات func الدّالة المرغوب إنشاء دالّة جزئيّة منها. args المُعاملات التي ...

الأعداد العشرية (ذات الفاصلة العائمة) float في بايثون

الأعداد العشرية (ذات الفاصلة العائمة floating point) هي الأعداد التي تتضمن فاصلة عشرية أو علامة أسية: >>> x = 2.5 >>> y = -1.609 >>> z = 3e4 >>> print(z) 30000.0 >>> a = 10. >>> b = .001 >>> c = 0e0 >>> print(a, b, c) 10.0 0.001 0.0 يمكن الحصول على معلومات حول دقّة الأعداد العشرية والتمثيل الداخلي لها في الحاسوب الذي يعمل عليه البرنامج عن طريق مكتبة sys.float_info: >>> import sys >>> sys.float_info sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021, min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1) التحويل إلى الأعداد العشرية ...

الأعداد العشرية (ذات الفاصلة العائمة) float في بايثون

الأعداد العشرية (ذات الفاصلة العائمة floating point) هي الأعداد التي تتضمن فاصلة عشرية أو علامة أسية: >>> x = 2.5 >>> y = -1.609 >>> z = 3e4 >>> print(z) 30000.0 >>> a = 10. >>> b = .001 >>> c = 0e0 >>> print(a, b, c) 10.0 0.001 0.0 يمكن الحصول على معلومات حول دقّة الأعداد العشرية والتمثيل الداخلي لها في الحاسوب الذي يعمل عليه البرنامج عن طريق مكتبة sys.float_info: >>> import sys >>> sys.float_info sys.float_info(max=1.7976931348623157e+308, max_exp=1024, max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021, min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16, radix=2, rounds=1) التحويل إلى الأعداد العشرية ...

تبديل المتغير المؤقت إلى استدعاء(Replace Temp with Query)

المشكلة تخزين نتيجة تعبيرٍ ما (expression) في متغيِّر محليٍّ (local variable) لاستخدامه لاحقًا في الشيفرة. الحل نقل التعبير بأكمله إلى تابعٍ (method) مستقلٍ يعيد نتيجته، وعندها سيكون استدعاء هذا التابع بديلًا عن استخدام المتغيِّر (variable)، ومن الممكن أيضًا دمج هذا التابع مع توابع أخرى عند الحاجة للقيام بذلك. مثال قبل إعادة التصميم نلاحظ في الشيفرة الآتية وجود متغيِّرٍ مؤقتٍ باسم basePrice لتخزين القيمة الناتجة عن تنفيذ التعبير الرياضيّ بمعامل الجداء (أي المعامل *)، وسيُستخدَم هذا المتغيِّر لاحقًا في الأجزاء الشرطيّة ...

الدالة functools.total_ordering()‎ في بايثون

يقوم مُزخرف الأصناف functools.total_ordering()‎ بزخرفة صنف يُعرّف تابعًا أو عدّة توابع ترتيب مُقارنة غنيّة (rich comparison ordering methods)، ويقوم بإضافة بقيّة توابع المُقارنة. يُبسّط هذا الجهد المبذول في تحديد جميع عمليّات المُقارنة الغنيّة المُمكنة. يجب على الصّنف أن يُعرّف التّابع الخاصّ ‎__lt__()‎، أو ‎__le__()‎، أو ‎__gt__()‎، أو ‎__ge__()‎. إضافة إلى التّابع الخاصّ ‎__eq__()‎. البنية العامة @functools.total_ordering المعاملات لا توجد مُعاملات. أمثلة المثال التّالي يوضّح كيفيّة استعمال المُزخرف للمُقارنة بين سياراتٍ حسب سُرعتها، تابع حالة التّساوي يُشير إلى أنّ نُسخةً من ...

الوحدة copy في بايثون

لا تنشئ عبارات الإسناد في بايثون نسخة من الكائنات، بل تربط بين الهدف والكائن. ولكن تظهر الحاجة إلى إنشاء نسخ من الكائنات في المجموعات التي تكون قابلة للتعديل أو التي تتضمّن عناصر قابلة للتعديل، بحيث يكون بالإمكان تغيير نسخة دون انتقال تلك التغييرات إلى الكائن الآخر. دوال الوحدة copy تقدّم هذه الوحدة مجموعة من عمليات النسخ السطحية والعميقة. copy.copy(x)‎ تعيد الدالة نسخة سطحية من الكائن المعطى. copy.deepcopy(x)‎ تعيد الدالة نسخة عميقة من الكائن المعطى. exception copy.error يُطلق هذا الاستثناء عند ...

استبدال المُنشئ بتابع التصميم (Replace Constructor with Factory Method)

المشكلة لديك مُنشئ (constructor) معقد يقوم بما هو أكثر من مجرد وضع قيم المعامل في حقول الكائن. الحل إنشاء تابع تصميم واستخدامه لاستبدال استدعاءات المُنشئ. مثال قبل إعادة التصميم وجود منشئ معقد للصنف Employee: في لغة Java: class Employee { Employee(int type) { this.type = type; } //... } في لغة C#‎: public class Employee { public Employee(int type) { this.type = type; } //... } في لغة PHP: class ...

توحيد التعبير الشرطي (Consolidate Conditional Expression)

المشكلة وجود عدة شروط تؤدي إلى نفس النتيجة أو الإجراء. الحل توحيد جميع هذه الشروط في تعبير وحيد. مثال قبل إعادة التصميم وجود عدة شروط يتم التحقق منها في الشيفرة: في لغة Java: double disabilityAmount() { if (seniority < 2) { return 0; } if (monthsDisabled > 12) { return 0; } if (isPartTime) { return 0; } // حساب مقدار العجز //... } في ...

الحفاظ على الكائن كاملًا (Preserve Whole Object)

المشكلة جلب عدة قيم من أحد الكائنات، ثم تمريرها كمعاملات إلى أحد التوابع. الحل حاول تمرير الكائن بالكامل بدلًا من ذلك. مثال قبل إعادة التصميم جلب قيمة درجة الحرارة المنخفضة low والمرتفعة high من الكائن daysTempRange ثم تمريرهما إلى التابع ()withinTange: في لغة Java: int low = daysTempRange.getLow(); int high = daysTempRange.getHigh(); boolean withinPlan = plan.withinRange(low, high); في لغة C#‎: int low = daysTempRange.GetLow(); int high = daysTempRange.GetHigh(); bool withinPlan = plan.WithinRange(low, high); في لغة PHP: $low = $daysTempRange->getLow(); $high = $daysTempRange->getHigh(); $withinPlan = $plan->withinRange($low, $high); في لغة Python: ...

دمج المتغير المؤقت (Inline Temp)

المشكلة وجود متغيِّرٍ مؤقَّت (temporary) لحفظ قيمة تعبيرٍ (expression) بسيطٍ ولا شيء آخر سواه. الحل تبديل كلُّ مرجعيّةٍ (reference) للمتغيِّر ليحلَّ محلَّها التعبيرُ نفسه. مثال قبل إعادة التصميم نلاحظ في الشيفرة الآتية وجود متغيِّرٍ مؤقتٍ باسم basePrice لتخزين القيمة الناتجة عن تعبير استدعاء التابع order.basePrice()‎، والذي سيُستخدَم في التعليمة التالية لتعريفه: في لغة Java: boolean hasDiscount(Order order) { double basePrice = order.basePrice(); return basePrice > 1000; } في لغة #C: bool HasDiscount(Order order) { double basePrice = order.BasePrice(); return ...

الدالة functools.singledispatch()‎ في بايثون

تُحوّل الدّالة functools.singledispatch()‎ دالّةً عاديّة إلى دالّة عموميّة وحيدة الإرسال (single-dispatch generic function). الدّالة العموميّة هي كلّ دالّة تتكوّن من عدّة دوال تُنفّذ نفس العمليّة لعدّة أنواع. تُحدّد الدّالة التي ستُنفّذ عبر خوارزميّة الإرسال (dispatch algorithm). تكون الدّالة العموميّة وحيدةَ إرسالٍ إذا كان نوع مُعامل واحد هو الذي يُحدّد الدّالة التي ستُنفَّذ. البنية العامة @functools.singledispatch المعاملات لا توجد مُعاملات القيمة المعادة دالّة عموميّة وحيدة الإرسال. أمثلة لإنشاء دالّة عموميّة، زخرِفها بالمُزخرِف ‎@singledispatch‎. لاحظ أنّ الإرسال يحدث عند نوع أوّل مُعامل: ...

وراثة الأصناف في بايثون

تدعم بايثون شأنها في ذلك شأن أي لغة برمجية كائنية التوجه مفهوم الوراثة، وأبسط صيغة لتعريف صنف مشتق أو موروث من صنف آخر هي: class DerivedClassName(BaseClassName):     <statement-1>     .     .     .     <statement-N> يجب أن يكون الاسم BaseClassName معرّفًا في النطاق الذي يحتوي تعريف الصنف المشتق. ويمكن استخدام أي تعبير محلّ اسم الصنف الأساسي، ويمكن لهذا أن يكون مفيدًا عندما يكون الصنف الأساسي معرّفًا في وحدة أخرى على سبيل المثال: class DerivedClassName(modname.BaseClassName): يجري تنفيذ تعريف الصنف المشتق بنفس الطريقة ...

Python/types

تقدّم هذه الوحدة عددًا من الدوال المساعدة لإنشاء أنواع بيانات جديدة بصورة ديناميكية، إضافة إلى أنّها تعرّف أسماءً لبعض أنواع الكائنات التي يستخدمها مفسّر بايثون المعياري، ولكنّها ليست كائنات داخلية مثل int أو str، إلى جانب أنّ هذه الوحدة تقدم بعض الأصناف والدوال المساعدة الخاصة ببعض الأنواع، والتي لا تعدّ أساسية بما يكفي لتصبح أصنافًا ودوالّ داخلية. إنشاء الأنواع ديناميكيًا تقدّم هذه الوحدة ثلاث دوالّ تساعد في إنشاء أنواع البيانات ديناميكيًا: الدالة types.new_class()‎‎ تنشئ هذه الدالة ديناميكيًا كائن صنف باستخدام ...

إزالة الإسناد إلى المعاملات (Remove Assignments to Parameters)

المشكلة إسناد قيمةٍ ما إلى أحد المعاملات (parameter) داخل التابع (method body). الحل استخدام متغيِّرٍ محليٍّ (local variable) بدلًا من المعامل. مثال قبل إعادة التصميم نلاحظ وجود عمليّة إسنادٍ (من بعد الإنقاص بمقدار 2) إلى معامل التابع الوارد باسم inputVal: في لغة Java: int discount(int inputVal, int quantity) { if (inputVal > 50) { inputVal -= 2; } //... } في لغة #C: int Discount(int inputVal, int quantity) { if (inputVal > 50) ...

تجزئة المتغير المؤقت (Split Temporary Variable)

المشكلة وجود متغيِّرٍ محليّ يُستخدَم لتخزين عدّة قيمٍ مؤقتةٍ (مرحليّة) داخل التابع. الحل استخدام متغيِّراتٍ منفصلةٍ ومستقلّةٍ للقيم المختلفة، بحيث يكون كلَُ متغيِّرٍ مسؤولًا عن تخزين البيانات لمهمةٍ واحدةٍ فقط. مثال قبل إعادة التصميم نلاحظ في الشيفرة الآتية استخدام المتغيِّر temp لتخزين ناتج كلِّ من تعبيريّ المحيط والمساحة: في لغة Java: double temp = 2 * (height + width); System.out.println(temp); temp = height * width; System.out.println(temp); في لغة #C: double temp = 2 * (height + width); Console.WriteLine(temp); temp = height * width; Console.WriteLine(temp); في لغة PHP: $temp ...

Python/Topics

بنية اللغة بيان للبنية العامة للغة بايثون وبعض الأمور العامة مثل التعليقات وتسمية المعرّفات وغيرها. مفسر بايثون يستخدم مفسر بايثون لمعالجة الشيفرات المكتوبة بها، وهو يقبل عددًا من الخيارات، ويمكن تشغيله في الوضع التفاعلي. أنواع البيانات القيمة المنطقية (boolean) القيمتان المنطقيتان اللتان تدعمهما بايثون هما True و False وهما كائنان ثابتان (Constant objects) يعبران عن صحّة تعبير ما، فإمّا أن يكون صحيحًا True أو خطأً False. الأعداد الصحيحة (int) العدد الصحيح integer هو أي عدد موجب أو سالب لا يتضمن ...

if في بايثون

تقدّم بايثون عبارة if للتحكم المشروط بتدفق الشيفرة، وتأخذ الصيغة التالية: if expression: statement فعلى سبيل المثال: >>> x = int(input("Please enter an integer: ")) Please enter an integer: -16 >>> if x < 0: ...     x = 0 ...     print('Negative changed to zero') Negative changed to zero عبارة elif يمكن استخدام عبارة elif (وهي اختصار لعبارة 'else if' ) عند الحاجة إلى التحقق من شروط إضافية، وكما هو موضح في المثال التالي: >>> x = int(input("Please enter an integer: ")) Please ...

if في بايثون

تقدّم بايثون عبارة if للتحكم المشروط بتدفق الشيفرة، وتأخذ الصيغة التالية: if expression: statement فعلى سبيل المثال: >>> x = int(input("Please enter an integer: ")) Please enter an integer: -16 >>> if x < 0: ...     x = 0 ...     print('Negative changed to zero') Negative changed to zero عبارة elif يمكن استخدام عبارة elif (وهي اختصار لعبارة 'else if' ) عند الحاجة إلى التحقق من شروط إضافية، وكما هو موضح في المثال التالي: >>> x = int(input("Please enter an integer: ")) Please ...

for في بايثون

تختلف عبارة for قليلًا في بايثون عن نظيرتها في لغتي C أو Pascal، فبدلًا من تكرار الحلقة استنادًا إلى عملية حسابية (مثل لغة Pascal) أو منح المستخدم القدرة على تعريف عدد مرات التكرار والشرط الذي يؤدي إلى إيقاف عمل الحلقة (كما في لغة C)، فإنّ عبارة for في بايثون تمرّ على عناصر أي تسلسل (قائمة أو سلسلة نصية) معتمدة في ذلك على ترتيب تلك العناصر في ذلك التسلسل. بنية عبارة for >>> # معرفة أطوال السلاسل النصية: ... words = ['cat', ...

for في بايثون

تختلف عبارة for قليلًا في بايثون عن نظيرتها في لغتي C أو Pascal، فبدلًا من تكرار الحلقة استنادًا إلى عملية حسابية (مثل لغة Pascal) أو منح المستخدم القدرة على تعريف عدد مرات التكرار والشرط الذي يؤدي إلى إيقاف عمل الحلقة (كما في لغة C)، فإنّ عبارة for في بايثون تمرّ على عناصر أي تسلسل (قائمة أو سلسلة نصية) معتمدة في ذلك على ترتيب تلك العناصر في ذلك التسلسل. بنية عبارة for >>> # معرفة أطوال السلاسل النصية: ... words = ['cat', ...

استبدال الخوارزمية (Substitute Algorithm)

المشكلة الحاجة إلى استبدال خوارزميّة ما بخوارزميّة أخرى. الحل تعديل محتوى التابع (method body) الذي يُنفِّذ الخوارزمية السابقة ليُنفِّذ الخوارزمية الجديدة. مثال قبل إعادة التصميم تتلخَّص مهمة التابع foundPerson بالبحث عن الأشخاص ذوي الأسماء "Don" أو "John" أو "Kent" وذلك بالمرور بعناصر المصفوفة النصّيّة people باستخدام حلقة for كما في الشيفرة: في لغة Java: String foundPerson(String[] people){ for (int i = 0; i < people.length; i++) { if (people[i].equals("Don")){ return "Don"; ...

التابع Method.parameters‎ في روبي

يعيد التابع parameters معلومات عن معاملات الكائن Method الذي استُدعي معه. البنية العامة parameters → array‎ القيمة المعادة تعاد مصفوفة تحوي معلومات عن وسائط الكائن Method المعطى. أمثلة مثال على استخدام التابع parameters‎: def foo(bar); end method(:foo).parameters #=> [[:req, :bar]] def foo(bar, baz, bat, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]] def foo(bar, *args); end method(:foo).parameters #=> [[:req, :bar], [:rest, :args]] def foo(bar, baz, *args, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]‎ انظر أيضا التابع owner: يعيد الصنف ...

الدوال المضمنة في لغة Python

abs()‎ القيمة المطلقة (absolute value) لعدد معيّن. all()‎ القيمة True إن كانت جميع عناصر الكائن القابل للتكرار (iterable) المعطى تُساوي القيمة True أو إن كان الكائن القابل للتكرار فارغًا. any()‎ القيمة True إن كان أحد عناصر الكائن القابل للتكرار (iterable) المعطى يساوي القيمة True أو إن كان الكائن القابل للتكرار فارغًا. ascii()‎ تمثيل (representation) نصي لكائن مُعيّنٍ يُمكن طباعته. bin()‎ تُحوّل عددًا صحيحًا (integer number) إلى سلسلةٍ نصيّةٍ ثنائيّة (binary string) مسبوقة بالمقطع النّصيّ "0b". bool()‎ قيمة منطقيّة تكون إمّا ...

التابع Object.method في روبي

يبحث التابع method عن تابعٍ باسمٍ محدَّد في الكائن المعطى بوصفه مستقبلًا (receiver)، ثمَّ يعيد كائنًا من النوع Method لذلك التابع (أو يرمي الاستثناء NameError). يتصرَّف الكائن Method كتعبيرٍ مغلق (closure) في نسخ الكائن الخاصة بالكائن الذي يبحث فيه؛ لذلك، تبقى متغيِّرات النسخة (instance variables) وقيمة self متاحةً. البنية العامة method(sym) → method المعاملات sym رمزٌ يشير إلى اسم التابع المراد البحث عنه. القيم المعادة يُعاد كائنًا من النوع Method يمثِّل التابع الموافق للاسم sym الموجود في الكائن المعطى، أو ...

التابع Method.to_proc‎ في روبي

يعيد التابع to_proc الكائن Proc المقابل للكائن Method الذي استُدعي معه. البنية العامة to_proc → proc‎ القيمة المعادة يعاد كائنٌ من النوع Proc الذي يقابل الكائن Method المعطى. انظر أيضا التابع super_method: يعيد كائنًا من النوع Method للصنف الأب (superclass) للكائن Method الذي استدعي معه. التابع to_s: يعيد اسم التابع الأصلي (underlying method). مصادر قسم التابع to_proc‎ في الصنف Method‎ في توثيق روبي الرسمي.

التابع Method.super_method‎ في روبي

يعيد التابع super_method كائنًا من النوع Method للصنف الأب (superclass) للكائن Method الذي استدعي معه لاستدعائه عند استخدام super، أو يعيد nil إن لم يكن هناك تابع في الصنف الأب. البنية العامة super_method → method‎ القيمة المعادة يعاد كائن من النوع Method للصنف الأب للكائن Method المعطى، أو تعاد القيمة nil إن لم يكن هناك تابع في الصنف الأب. انظر أيضا التابع source_location: يعيد اسم الملف المصدر لروبي ورقم السطر الذي يحتوي هذا التابع، التابع to_proc: يعيد كائنًا من النوع Proc المقابل ...

الأصناف البديلة (alternative) ذات الواجهات (interfaces) المختلفة

توصيف المشكلة التطابق بالمهام (function) ما بين صنفين (classes) ولكن بأسماءٍ مختلفةٍ لتوابعهما (methods). أسبابها عدم دراية المبرمج بوجود صنفٍ آخر يكافِئ بمهامّه مهامّ الصنف الحالي الذي ينشِئه. وما الحل؟ حذف أحد الصنفين بعد تنفيذ إحدى الحلول الآتية: إعادة تسمية التوابع (methods) لتصبح متطابقةً بكافّة الأصناف البديلة (alternative) (أي الأصناف المتكافئة بالمهام). توحيد التوقيع (signature) وتعريف الاستخدام ما بين التوابع، وذلك إمّا بنقل التابع (move method) أو إضافة المعاملات (add parameters) أو دمج التوابع عبر المعاملات (parameterize method). إن كان ...

التابع Object.define_singleton_method في روبي

يُعرِّف التابع define_singleton_method تابعًا منفردًا (singleton method) في المستقبل (receiver). البنية العامة define_singleton_method(symbol, method) → symbol define_singleton_method(symbol) { block } → symbol المعاملات symbol الرمز المُمرَّر إلى التابع والذي سيُعرِّف التابع المنفرد. method التابع المُمرَّر كمعامل. يمكن أن يكون هذا التابع كائنًا من النوع proc، أو Method، أو UnboundMethod. block وسيط اختياري يمثِّل الكتلة المُمرَّرة إلى التابع. إذا أعطي، فستُنفَّذ الكتلة المعطاة كما لو أنَّها من جسم التابع method. القيم المعادة يُعاد تابعٌ منفردٌ يمكن استدعائه في المستقبل. أمثلة مثالٌ عن ...

التابع InstructionSequence.of‎ في روبي

يُعيد التابع of سلسلة التعليمات التي تحوي الكائن Proc أو Method المعطى. البنية العامة of(p1) أمثلة مثال على استعمال التابع of باستخدام irb: # a proc > p = proc { num = 1 + 2 } > RubyVM::InstructionSequence.of(p) > #=> <RubyVM::InstructionSequence:block in irb_binding@(irb)> # for a method > def foo(bar); puts bar; end > RubyVM::InstructionSequence.of(method(:foo)) > #=> <RubyVM::InstructionSequence:foo@(irb)>‎ أو باستخدام compile_file: # /tmp/iseq_of.rb def hello puts "hello, world" end $a_global_proc = proc { str = 'a' + 'b' } # in irb > require '/tmp/iseq_of.rb' # first the method hello > RubyVM::InstructionSequence.of(method(:hello)) > #=> ...

أصناف البيانات (Data Classes)

توصيف المشكلة وجود العديد من أصناف البيانات في الشيفرة، والتي تُستخدَم لتخزين البيانات التي تحتاج إليها الأصناف الأخرى، إذ تحتوي على حقولٍ للبيانات (fields) وتوابع للوصول إليها (accessors) أي توابعَ للحصول على بيانات الحقول (getter) وأخرى لتعديلها (setter)، ولا تقوم هذه الأصناف بأيّ مهمّة أخرى ولا تستطيع كذلك تنفيذ العمليات (operations) على بياناتها بمفردها. أسبابها من الطبيعي أن يحتوي الصنف -بادئ الأمر- على القليل من الحقول العامّة (public fields) وبعض التوابع للوصول إليها (accessors) ولكن إن استمرَّ الصنف كذلك فلن ...

التابع Method.to_s‎ في روبي

يعيد التابع to_s اسم التابع الأصلي (underlying method). البنية العامة to_s→ string‎ القيمة المعادة تعاد سلسلة نصية تمثِّل اسم التابع الأصلي. أمثلة مثال على استخدام التابع to_s‎: "cat".method(:count).inspect #=> "#<Method: String#count>"‎ انظر أيضا التابع to_proc: يعيد الكائنً Proc المقابل للكائن Method الذي استدعي معه. التابع unbind: يفك ارتباط الكائن Method من مُستقبِله (receiver) الحالي. مصادر قسم التابع to_s‎ في الصنف Method‎ في توثيق روبي الرسمي.

التابع Method.receiver‎ في روبي

يعيد التابع receiver المستقبل المتلقي (bound receiver) للكائن Method الذي استُدعي معه. البنية العامة receiver → object‎ القيمة المعادة يعاد المستقبل المتلقي (bound receiver) للكائن Method المعطى. انظر أيضا التابع parameters: يعيد معلومات عن معاملات الكائن Method الذي استُدعي معه. التابع source_location: يعيد اسم الملف المصدر لروبي ورقم السطر الذي يحتوي كائن Method الذي استُدعي معه.. مصادر قسم التابع receiver‎ في الصنف Method‎ في توثيق روبي الرسمي.

التابع UnboundMethod.to_s‎ في روبي

يعيد التابع to_s اسم التابع الأصلي (underlying method) للتابع الحر الذي استدعي معه. البنية العامة to_s→ string‎ القيمة المعادة يعاد اسم التابع الأصلي (underlying method) للتابع الحر المعطى. أمثلة مثال على استخدام التابع to_s‎: "cat".method(:count).inspect #=> "#<Method: String#count>"‎ انظر أيضًا التابع inspect: يعيد اسم التابع الأصلي (underlying method) للتابع الحر الذي استُدعي معه. التابع original_name: يعيد الاسم الأصلي للتابع الحر الذي استُدعي معه. مصادر قسم التابع to_s‎ في الصنف UnboundMethod‎ في توثيق روبي الرسمي.

التابع ‎Method.eql?‎‎ في روبي

يتحقق التابع ?eql من تساوي كائنين من النوع Method. يكون كائنان من النوع Method متساويتين إذا كانا مرتبطين بنفس الكائن، ولهما نفس التعريف، وكانا مملوكين من قبل نفس الصنف أو الوحدة. البنية العامة eql?(other_meth) → true or false‎ المعاملات other_meth‎ كائن من النوع Method يراد التحقق من تساويه مع الكائن المعطى. القيمة المعادة تعاد القيمة true إن كان الكائن المعطى مساويًا للكائن other_meth‎، وإلا فستعاد القيمة false. انظر أيضا التابع ==: يتحقق من تساوي كائنين من النوع Method. مصادر قسم التابع ...

التابع Method.source_location‎ في روبي

يعيد التابع source_location اسم الملف المصدر لروبي ورقم السطر الذي يحتوي للتابع Method الذي استدعي معه، أو يعيد القيمة nil إن لم يُعرّف هذا التابع في روبي (أي أنه أصلي). البنية العامة source_location → [String, Integer]‎ القيمة المعادة يعاد اسم الملف المصدر لروبي ورقم السطر الذي يحتوي للتابع Method المعطى، أو تعاد القيمة nil إن لم يُعرّف هذا التابع في روبي. انظر أيضا التابع receiver: يعيد المستقبل المتلقي (bound receiver) لكائن Method. التابع super_method: يعيد كائنًا من النوع Method للصنف الأب (superclass)، ...

التسلط على الكائنات الأخرى (Feature Envy)

توصيف المشكلة استخدام بعضُ التوابع (methods) بياناتِ الكائنات (objects) الأخرى أكثر ممّا تستخدم بياناتِها ذاتَها. أسبابها تحدث هذه المشكلة عقب نقل الحقول (fields) إلى أصناف البيانات (data class)، إذ من الأفضل نقلُ التوابع المستخدِمة لتلك الحقول لذلك الصنف أيضًا. وما الحل؟ لنضع بالحسبان القاعدة الآتية: يجب أن تبقى الأجزاء التي تتغيَّر بآنٍ واحدٍ في المكان ذاته معًاولتحقيق ذلك: نقلُ التوابع (move methods) إلى المكان الأنسب في الشيفرة. عندما يستخدِم جزءٌ فقط من التابع بياناتِ كائنٍ (object) آخر، فالأفضل استخراجُ تابعٍ ...

التعليقات (Comments)

توصيف المشكلة وجود الكثير من التعليقات في التوابع (methods) بهدف الشرح التفصيليّ للشيفرة. أسبابها غالبًا ما يكون السبب منطقيًّا لإضافة التعليقات وخاصّة عندما تكون الشيفرة مبهمةً غير واضحة، لكن بهذه الحالة لن نعدَّ تلك التعليقات إلا محاولاتٍ بائسةً لتغطية الشيفرة الرديئة بجانبها! ولتكن القاعدة: إنّ أفضل تعليقٍ يمكن أن تضيفه هو تسمية التوابع (methods) والأصناف (classes) تسميةً جيّدةً معبِّرة. وإذا ما وجدتَ أن الشيفرة لن تكون واضحةً بحذف التعليقات المُضافة، فمن المُؤسف القول بضرورة تغيير بُنيتها (structure) إلى الشكل الذي ...

الوحدة operator‎ في بايثون

تُقدّم الوحدة operator مجموعة من الدوال الفعالّة سرعةً وأداءً، والتي تُماثل العوامل الأساسيّة في بايثون. على سبيل المثال، الاستدعاء ‎operator.add(x, y)‎ يُماثل التّعبير x+y. العديد من أسماء الدوال هنا هي نفسها المُستعمَلة في التوابع الخاصّة (special methods)، مع إزالة الشرطتين التحتيتين (‎add()‎ عوضًا عن ‎__‎‎add‎__‎()‎). ولإبقاء التوافقيّة العكسيّة مع نسخ أقدم من بايثون، فالكثير من الدوال تمتلك دوالًا مُكافئةً لها تُبقي على الشرطتين. ومن المُفضّل استخدام أسماء الدوال عديمة الشرطتين لتكون الشيفرة أوضحَ وأسهل قراءةً، أي أنّه من المُفضّل استعمال ...

التابع Method.name‎ في روبي

يعيد name اسم الكائن Method الذي استُدعي معه. البنية العامة name → symbol‎ القيمة المعادة يعاد رمزٌ يمثِّل اسم الكائن Method الذي استُدعي معه. انظر أيضا التابع inspect: يعيد اسم التابع الأصلي (underlying method). التابع original_name: يعيد الاسم الأصلي للتابع الذي استُدعي معه. مصادر قسم التابع name‎ في الصنف Method‎ في توثيق روبي الرسمي.

التابع Method.hash‎ في روبي

يعيد التابع hash القيمة hash المقابلة للكائن Method الذي استُدعي معه. راجع أيضًا صفحة Object.hash. البنية العامة hash→ integer‎ القيمة المعادة يعاد عدد صحيح يمثِّل القيمة hash المقابلة للكائن Method المعطى. انظر أيضا التابع inspect: يعيد اسم التابع الأصلي (underlying method). مصادر قسم التابع hash‎ في الصنف Method‎ في توثيق روبي الرسمي.

الصنف UnboundMethod في روبي

تدعم روبي شكلين من التوابع الكائنية (objectified methods). يستخدم الصنف Method لتمثيل التوابع المرتبطة بكائن معين، ويمكن إنشاء كائنات التوابع من هذا النوع عبر التابع Object.method. تدعم روبي أيضًا التوابع الحرة (unbound methods)؛ وهي كائنات توابع غير مرتبطة بكائن معين. يمكن إنشاؤها إما عن طريق استدعاء Module.instance_method، أو عن طريق استدعاء unbind على تابع مرتبط (bound method object). نتيجة كليهما ستكون تابعًا حرًا (كائن من النوع UnboundMethod). لا يمكن استدعاء التوابع الحرة إلا بعد ربطها بكائن ما. ويجب أن يعيد ...

التابع Method.inspect‎ في روبي

يعيد inspect اسم التابع الأصلي (underlying method). البنية العامة inspect→ string‎ القيمة المعادة تعاد سلسلة نصية تمثِّل اسم التابع الأصلي. أمثلة مثال على استخدام التابع inspect‎: "cat".method(:count).inspect #=> "#<Method: String#count>"‎ انظر أيضا التابع hash: يعيد القيمة hash المقابلة للكائن Method الذي استُدعي معه. التابع name: يعيد اسم التابع. مصادر قسم التابع inspect‎ في الصنف Method‎ في توثيق روبي الرسمي.

التابع Method.unbind‎ في روبي

يفك التابع unbind ارتباط الكائن Method الذي استُدعي معه من مُستقبِله (receiver) الحالي. يمكن في وقت لاحق ربط الكائن الناتج UnboundMethod مع كائن جديد من نفس الصنف (انظر UnboundMethod). البنية العامة unbind → unbound_method‎ القيمة المعادة يعاد كائن من النوع UnboundMethod يمثِّل مستقبل الكائن Method المعطى. انظر أيضا التابع to_s: يعيد اسم التابع الأصلي (underlying method). مصادر قسم التابع unbind‎ في الصنف Method‎ في توثيق روبي الرسمي.

التابع UnboundMethod.parameters‎ في روبي

يعيد التابع parameters معلومات عن معاملات التابع الحر الذي استُدعي معه على شكل مصفوفة. البنية العامة parameters → array‎ القيمة المعادة تعاد مصفوفة تحوي معلومات عن معاملات التابع الحر الذي استُدعي معه على شكل مصفوفة. أمثلة مثال على استخدام التابع parameters‎: def foo(bar); end method(:foo).parameters #=> [[:req, :bar]] def foo(bar, baz, bat, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]] def foo(bar, *args); end method(:foo).parameters #=> [[:req, :bar], [:rest, :args]] def foo(bar, baz, *args, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, ...

الصنف NoMethodError في روبي

يُطلق الاستثناء NoMethodError عند استدعاء تابعٍ مع مستقبِل (receiver) غير مُعرَّف فيه مع فشل الاستجابة للتابع method_missing. "hello".to_ary سيُطلق الاستثناء NoMethodError عند تنيفذ الشيفرة السابقة بالشكل: NoMethodError: undefined method `to_ary' for "hello":String توابع الصنف العامة (Public Class Methods) new ينشئ استثناءً من النوع NoMethodError للتابع ذي الاسم المعطى مع الوسائط المُمرَّرة. توابع النسخة العامة (Public Instance Methods) args يعيد الوسائط التي تم تمريرها كمعامل ثالث إلى الباني new. ?private_call مصادر قسم الصنف NoMethodErrorفي توثيق روبي الرسمي.

التابع Method.original_name‎ في روبي

يعيد التابع original_name الاسم الأصلي للكائن Method الذي استُدعي معه. البنية العامة original_name → symbol‎ القيمة المعادة يعاد رمزٌ يمثِّل الاسم الأصلي للكائن Method المعطى. أمثلة مثال على استخدام التابع original_name‎: class C def foo; end alias bar foo end C.instance_method(:bar).original_name # => :foo‎ انظر أيضا التابع name: يعيد اسم التابع. التابع owner: يعيد الصنف أو الوحدة (module) التي تُعرِّف الكائن Method الذي استُدعي معه. مصادر قسم التابع original_name‎ في الصنف Method‎ في توثيق روبي الرسمي.

التابع UnboundMethod.super_method‎ في روبي

يعيد التابع super_method كائنًا من النوع Method للصنف الأب (superclass)، حتى يمكن استدعاؤه عند استخدام المتغير super، أو يعيد nil إن لم يكن هناك تابع في الصنف الأب. البنية العامة super_method → method‎ القيمة المعادة يعاد كائنٌ من النوع Method للصنف الأب (superclass)، أو تعاد القيمة nil إن لم يكن هناك تابع في الصنف الأب. انظر أيضًا التابع source_location: يعيد اسم الملف المصدر لروبي ورقم السطر الذي يحتوي هذا التابع. التابع to_s: يعيد الاسم الأصلي التابع الحر (underlying method). مصادر قسم التابع ...

نقل الميزات ما بين الكائنات (Moving Features between Objects)

تساعد عملية إعادة التصميم (refactoring) في توزيع المهام بشكل مثاليّ على الأصناف (classes) المختلفة في الشيفرة، وتضمن تقنيات الحل هذه طريقةً آمنةً لنقل المهام (functionality) ما بين الأصناف، وإنشاء أصناف جديدة وحماية تفاصيل عملية التنفيذ (implementation) من الوصول العام (public access)، وهذه التقنيات تشمل: نقل التابع (Move Method) المشكلة: استخدام التابع (method) في صنفٍ (class) ما أكثر من استخدامه في صنفه الأساسيّ. الحل: إنشاء تابعٍ جديدٍ في الصنف الأكثر استخدامًا لذلك التابع ونقل شيفرته إلى التابع الجديد، ثم تحويل الشيفرة ...

نقل الميزات ما بين الكائنات (Moving Features between Objects)

تساعد عملية إعادة التصميم (refactoring) في توزيع المهام بشكل مثاليّ على الأصناف (classes) المختلفة في الشيفرة، وتضمن تقنيات الحل هذه طريقةً آمنةً لنقل المهام (functionality) ما بين الأصناف، وإنشاء أصناف جديدة وحماية تفاصيل عملية التنفيذ (implementation) من الوصول العام (public access)، وهذه التقنيات تشمل: نقل التابع (Move Method) المشكلة: استخدام التابع (method) في صنفٍ (class) ما أكثر من استخدامه في صنفه الأساسيّ. الحل: إنشاء تابعٍ جديدٍ في الصنف الأكثر استخدامًا لذلك التابع ونقل شيفرته إلى التابع الجديد، ثم تحويل الشيفرة ...

التابع Module.instance_methods‎ في روبي

يعيد التابع instance_methods مصفوفةً تحتوي على أسماء توابع النسخ (instance methods) العامة والمحمية (protected) في المستقبِل. بالنسبة للوحدات، ستكون التوابع هي العامة والمحمية. أما بالنسبة للأصناف، فستكون تلك التوابع هي توابع النسخ (وليس التوابع المفردة [singleton methods]). إذا كان أعطي المعامل الاختيار وكانت قيمته false، فلن يتم تضمين توابع الأسلاف (ancestors). البنية العامة instance_methods(include_super=true)→ array‎ المعاملات include_super‎ قيمة منطقية إن أعطيت وكانت false، فلن يتم تضمين توابع الأسلاف (ancestors). القيمة المعادة تعاد مصفوفة تحتوي على أسماء توابع النسخ العامة والمحمية (protected) ...

تقنيات إعادة التصميم (Refactoring Techniques)

إنشاء التوابع تستهدف إعادة التصميم بشكل رئيسيٍّ إنشاء التوابع الصحيحة المناسبة، إذ تكون التوابع الطويلة سببًا للمشاكل في كثيرٍ من الحالات، وتجعل شيفرات بعض التوابع منطق التنفيذ (execution logic) غامضًا ويصبح التابع بهذا عصيَّ الفهم من جهةٍ وصعب التغييرٍ من جهة ثانية. يشمل هذا القسم من الحلول كلَّ ما يتعلق بالتوابع وإزالة التكرار (duplicates) في الشيفرة ليسمح بإجراء التطويرات المستقبليّة، وهذه التقنيات هي: استخراج التوابع (Extract Methods): والتي تتمثل بوجود أجزاء من الشيفرة يُمكن عزلها وتجميعها سويةً. دمج التوابع (Inline ...

الصنف Module في روبي

الصنف Module هو مجموعة من التوابع والثوابت. التوابع الموجودة في الوحدات Module قد تكون إما توابع نسخة (instance methods)، أو توابع وحدة (module methods). توابع النسخة تظهر كتوابع في صنفٍ عند تضمين الوحدة، وذلك على خلاف توابع الوحدة. وعلى النقيض، يمكن استدعاء توابع الوحدة دون إنشاء كائن يُغلفها، بينما قد لا يمكن فعل ذلك مع توابع النسخة. انظر صفحة module_function. في الأمثلة الموجودة في صفحات التوابع، يشير المعامل sym إلى رمز، والذي قد يكون إما سلسلة نصية، أو كائنًا من النوع ...

الصنف Object في روبي

يعدُّ الصنف Object الجذر الافتراضي لكل كائنات روبي. يَرِث الصنف Object من الصنف BasicObject ما يسمح بإنشاء تسلسلات هرمية بديلة للكائن. تُتاح توابع الكائن لكل الأصناف ما لم يتم تجاهلها (overridden) صراحةً. تندمج الوحدة Kernel ضمن الصنف Object ما يعطي الوصول العام (global) للدّوال المبنية ضمنيًّا في الوحدة. رغم أنَّ توابع النسخة المنشأة من الصنف Object معرَّفةٌ عن طريق الوحدة Kernel، رأينا أن نوثّقهم هنا لمزيد من الوضوح. عند الإشارة (referencing) إلى الثوابت في الأصناف الوارثة من الصنف Object، لا ...

التابع InstructionSequence.disasm‎ في روبي

يأخذ التابع disasm كائنًا يمكن أن يكون من النوع Method أو من النوع Proc ويعيد سلسلة نصية تعليمات قابلة للقراءة لهذا المعامل المعطى. البنية العامة disasm(body) → str disassemble(body) → str‎ المعاملات body‎ كائن من النوع Method أو من النوع Proc. القيمة المعادة تعاد سلسلة نصية تحوي المعامل body على هيئة تعليمات قابلة للقراءة. أمثلة مثال على استخدام التابع disasm‎ مع تمرير الكائن Method إليه: # /tmp/method.rb def hello puts "hello, world" end puts RubyVM::InstructionSequence.disasm(method(:hello)) الناتج سيكون: == disasm: <RubyVM::InstructionSequence:hello@/tmp/method.rb>============ 0000 trace ...

التابع InstructionSequence.disassemble‎ في روبي

يأخذ التابع disassemble المعامل body، والذي سيكون إما كائنًا من النوع Method، أو من النوع Proc، ثم يُعيد سلسلة نصية تحوي هذا المعامل على هيئة تعليمات قابلة للقراءة. البنية العامة disasm(body) → str disassemble(body) → str‎ المعاملات body‎ كائن من النوع Method أو من النوع Proc. القيمة المعادة تعاد سلسلة نصية تحوي محتوى المعامل body على هيئة تعليمات قابلة للقراءة. أمثلة مثال على استخدام التابع disassemble‎ مع كائن من النوع Method: # /tmp/method.rb def hello puts "hello, world" end puts RubyVM::InstructionSequence.disasm(method(:hello))‎ الناتج سيكون: == disasm: ...

التابع Enumerator.new في روبي

ينشئ التابع new كائنًا جديدًا من النوع Enumerator يمكن استعماله ككائن قابل للتعداد (Enumerable). البنية العامة new(size = nil) { |yielder| ... } new(obj, method = :each, *args) في الشكل الأول للتابع، يُعرَّف التكرار عبر الكتلة المعطاة التي يمكن استخدام الكائن yielder - المعطى كمعامل - فيها لإعادة القيمة الناتجة عبر استدعاء التابع yield (أو اسمه البديل +>>+). في الشكل الثاني - المهمل - للتابع، يتكرر مُعدِّدٌ مُولَّد عبر الكائن obj المعطى باستعمال التابع method المعطى مع تمرير الوسائط args إليه. لا يُشجَّع على ...

سلاسل الرسائل (Message Chains)

توصيف المشكلة وجود العديد من الاستدعاءات المتسلسلة في الشيفرة، مثل: ‎$a->b()->c()->d()‎. أسبابها تحدث المشكلة عند طلب العميل (client request) كائنًا (object) آخر والذي بدوره يطلب كائنًا آخر ثالثًا وهكذا، مما يعني اعتماد العميل على التنقّل (navigation) في بنية الأصناف (class structure)، وبالتالي فإنّ أيّ تعديلٍ في تلك العلاقات سيتطلَّبُ إجراء التعديلات أيضًا على العميل بحدِّ ذاته. وما الحل؟ إخفاء التفويض (hide delegate) لحذف الاستدعاءات المُتسلسلة. قد يساعد -ببعض الحالات- التفكيرُ بسبب الوصول إلى آخر كائنٍ (object) مستدعى، وعندها يمكن اللجوء ...

التابع Enumerator::Lazy.enum_for في روبي

يشبه التابع enum_for التابع Kernel.to_enum باستثناء أنه يعيد مُعدِّدًا كسولًا (كائن من النوع Enumerator::Lazy). يجعل هذا من السهل تعريف توابع الصنف Enumerable التي ستبقى كسولة بشكل طبيعي إن استدعيت من مُعدِّد كسول (lazy enumerator). البنية العامة enum_for(method = :each, *args) → lazy_enum enum_for(method = :each, *args){|*args| block} → lazy_enum المعاملات method تابع. القيمة الافتراضية هي: each:. args الوسائط المُمرَّرة إلى التابع method. القيمة المعادة يعاد مُعدِّدٌ كسولٌ (كائن من النوع Enumerator::Lazy). أمثلة المثال التالي هو تكملة للمثال الموجود في صفحة التابع Kernel.to_enum: # ...

التابع Enumerator::Lazy.to_enum في روبي

يشبه التابع to_enum التابع Kernel.to_enum باستثناء أنه يعيد مُعدِّدًا كسولًا (كائن من النوع Enumerator::Lazy). يجعل هذا من السهل تعريف توابع الصنف Enumerable التي ستبقى كسولة بشكل طبيعي إن استدعيت من مُعدِّد كسول (lazy enumerator). البنية العامة to_enum(method = :each, *args) → lazy_enum to_enum(method = :each, *args) {|*args| block} → lazy_enum المعاملات method تابع. القيمة الافتراضية هي: each:. args الوسائط المُمرَّرة إلى التابع method. القيمة المعادة يعاد مُعدِّدٌ كسولٌ (كائن من النوع Enumerator::Lazy). أمثلة المثال التالي هو تكملة للمثال الموجود في صفحة التابع Kernel.to_enum: ...

عرض (250 السابقة | 250 التالية) (20 | 50 | 100 | 250 | 500).