نتائج البحث

اذهب إلى التنقل اذهب إلى البحث

الوحدة Math في روبي

تحوي الوحدة Math الدوال المثلثية والمتسامية (transcendental functions، وتدعى أيضًا الدوال اللاجبرية) الأساسية. راجع صفحة الصنف Float للحصول على قائمة الثوابت التي تحدد دقة الأعداد العشرية (floating point) في روبي. مجالات التعريف (Domains) والمجالات المقابلة (codomains) تعطى فقط للأعداد الحقيقية (وليس للأعداد العقدية). الثوابت E يمثل القيمة e الرياضية، وهو العدد الذي يحقق log(e) = 1. PI يمثل ثابت الدائرة PI (يرمز له رياضيًّا بالرمز π). توابع الصنف العامة (Public Class Methods) acos يحسب معكوس جيب التمام (arc cosine) للعدد المعطى. ...

الصنف Math::DomainError في روبي

يُطلَق الخطأ DomainError عند محاولة تقييم دالة رياضية خارج مجال تعريفها. على سبيل المثال، بما أنَّ القيم التي تعيدها الدالة cos تكون في المجال ‏‎-1...1، فإنّ دالتها العكسية acos مُعرفة على ذلك المجال: Math.acos(42) سيعطي عند تنفيذه الناتج التالي: Math::DomainError: Numerical argument is out of domain - "acos" انظر أيضا الصنف Math. مصادر قسم الصنف DomainError في الصنف Math‎ في توثيق روبي الرسمي.

الصنف Math::DomainError في روبي

يُطلَق الخطأ DomainError عند محاولة تقييم دالة رياضية خارج مجال تعريفها. على سبيل المثال، بما أنَّ القيم التي تعيدها الدالة cos تكون في المجال ‏‎-1...1، فإنّ دالتها العكسية acos مُعرفة على ذلك المجال: Math.acos(42) سيعطي عند تنفيذه الناتج التالي: Math::DomainError: Numerical argument is out of domain - "acos" انظر أيضا الصنف Math. مصادر قسم الصنف DomainError في الصنف Math‎ في توثيق روبي الرسمي.

الكائن Math في JavaScript

الكائن Math هو كائنٌ مُضمَّن في اللغة الذي يملك خاصيات ودوال تُمثِّل الثوابت والدوال الرياضيّة. هذا الكائن ليس دالةً بحد ذاته، انظر قسم الوصف للمزيد من المعلومات. الوصف على النقيض من الكائنات العامة الأخرى، الكائن Math ليس دالةً بانيةً (constructor)، وجميع الخاصيات والدوال التابعة للكائن Math هي خاصيات ساكنة (static)، وهذا يعني أنَّك تستطيع الإشارة إلى الثابت الرياضي π (باي) باستخدام الخاصية Math.PI وتستطيع استخدام دالة جيب الزاوية (sine) كما يلي Math.sin(x)‎، إذ إنَّ القيمة x هي الوسيط المُمرَّر إلى ...

الثابت PI الخاصة بالصنف Math في روبي

يمثل الثابت PI ثابت الدائرة pi (يرمز له رياضيًّا بالرمز π). هذا العدد هو عدد عشري ويساوي تقريبًا القيمة 3.14. البنية العامة Math::PI مثال مثال على استخدام الثابت PI: Math::PI #=> 3.141592653589793 انظر أيضا الثابت e: يمثل القيمة e الرياضية. مصادر قسم الثابتة PI في الصنف Math‎ في توثيق روبي الرسمي.

الثابت E الخاصة بالصنف Math في روبي

تمثل هذه الثابتة العدد e الرياضي (عدد أويلر أو العدد النيبيري)، وهو العدد الذي يحقق log(e) = 1. هذا العدد هو عدد عشري يساوي تقريبًا القيمة 2.72. البنية العامة Math::E مثال مثال على استخدام الثابت E: Math::E #=> 2.718281828459045 انظر أيضا التابع PI: يمثل ثابت الدائرة. مصادر قسم الثابت E في الصنف Math‎ في توثيق روبي الرسمي.

التابع Module.ancestors‎ في روبي

يعيد التابع ancestors قائمة مكونة الوحدات المُتضمنة/المضافة إلى الوحدة التي استُدعيت معها (بما في ذلك الوحدة نفسها). البنية العامة ancestors → array‎ القيمة المعادة تعاد قائمة مكونة الوحدات المُتضمنة/المضافة إلى الوحدة المعطاة (بما في ذلك الوحدة نفسها). أمثلة مثال على استخدام التابع ancestors‎: module Mod include Math include Comparable prepend Enumerable end Mod.ancestors #=> [Enumerable, Mod, Comparable, Math] Math.ancestors #=> [Math] Enumerable.ancestors #=> [Enumerable]‎ انظر أيضا التابع alias_method: ينشئ اسمًا ...

التابع Complex.polar في روبي

يعيد التابع ‎polar عددًا عقديًا وفق الشكل القطبي (polar form). الشكل القطبي للعدد العقدي هو: z= r(cosθ + i.sinθ)‎. البنية العامة polar(abs[, arg]) → complex المعاملات abs يمثّل طويلة (r) العدد العقدي. arg يمثِّل زاوية (θ) العدد العقدي. القيمة المعادة يعيد التابع ‎polar عددًا عقديًا وفق الشكل القطبي إذ يكون abs طويلة العدد العقدي و arg زاويته. أمثلة أمثلة عن استخدام التابع polar لإنشاء عدد عقدي انطلاقًا من الشكل القطبي: Complex.polar(3, 0) ...

التابع Math.log‎ في روبي

يعيد التابع log لوغاريتم العدد المعطى. في حال تمرير معامل ثاني إضافي، فسيُعد أساسَ اللوغاريتم، وإلا فالأساس سيكون العدد e (اللوغاريتم الطبيعي). مجال التعريف: (‎0 ، INFINITY]. المجال المقابل: (‎-INFINITY ، INFINITY). البنية العامة log(x) → Float log(x, base) → Float‎ المعاملات x‎ العدد الذي ستُطبَّق عليه العملية. base‎ عدد يمثل أساس اللوغاريتم. القيمة المعادة يعاد عدد عشري يمثِّل ناتج لوغاريتم العدد x. أمثلة مثال على استخدام التابع log‎: Math.log(0) #=> -Infinity Math.log(1) ...

التابع Module.const_set‎ في روبي

يضبط التابع const_set قيمة ثابت محدَّد إلى قيمة الكائن المعطى ثم يعيد ذلك الكائن. في حال لم يكن هناك ثابت يحمل الاسم المعطى، فسيُنشئ ثابت جديد ويسند إلى تلك القيمة. البنية العامة const_set(sym, obj) → obj const_set(str, obj) → obj‎ المعاملات sym‎ رمز يمثل الثابت. إذا لم يكن المعامل sym اسم ثابت صالح، فسيُطلق الخطأ NameError مع التحذير "wrong constant name". obj‎ الكائن المراد ضبط قيمته إلى الثابت. str‎ سلسلة نصية تمثل الثابتة. إذا لم يكن المعامل str‎ اسم ثابت صالح، فسيُطلق ...

التابع Math.sin‎ في روبي

يحسب التابع sin جيب (sin) العدد المعطى. يعيد قيمة عشرية تقع في المجال ‎-1.0..1.0. مجال التعريف: (‎-INFINITY ، INFINITY). المجال المقابل: [‎-1 ، 1]. البنية العامة sin(x) → Float‎ المعاملات x‎ عدد يمثِّل الزاوية بالراديان. القيمة المعادة يعاد عدد عشري يمثِّل ناتج حساب جيب (sin) العدد x المعطى. أمثلة مثال على استخدام التابع sin‎: Math.sin(Math::PI/2) #=> 1.0‎ انظر أيضا التابع sinh: يحسب الجيب القطعي (hyperbolic sine) للعدد المعطى. مصادر قسم التابع sin‎ في الصنف Math‎ في توثيق روبي الرسمي.

التابع Math.cos‎ في روبي

يحسب التابع cos جيب تمام العدد المعطى. يعيد عددًا عشريًا من المجال ‎-1.0..1.0. مجال التعريف: (‎-INFINITY ، INFINITY). المجال المقابل: [‎-1 ، 1]. البنية العامة cos(x) → Float‎ المعاملات x‎ عدد يمثِّل الزاوية التي ستطبق عليها العملية بالراديان. القيمة المعادة يعاد عدد عشري يمثِّل قيمة جيب تمام العدد x‎ المعطى. أمثلة مثال على استخدام التابع cos‎: Math.cos(Math::PI) #=> -1.0‎ انظر أيضا التابع cosh: يحسب جيب التمام القطعي (hyperbolic cosine) للعدد المعطى. مصادر قسم التابع cos‎ في الصنف Math‎ في توثيق روبي الرسمي.

التابع Numeric.step‎ في روبي

يستدعي التابع step الكتلة المعطاة مع تمرير سلسلة من الأعداد إليها بدءًا من العدد الذي استُدعي معه وحتى قيمة محدَّدة مع الزيادة أو الطرح بقدار خطوة ثابتة معطاة. البنية العامة step(by: step, to: limit) {|i| block }→ self step(by: step, to: limit) → an_enumerator step(limit=nil, step=1) {|i| block } → self step(limit=nil, step=1)→ an_enumerator‎ تنتهي الحلقة التكرارية عندما تكون القيمة المراد تمريرها إلى الكتلة أكبر من قيمة المعامل limit إن كان step موجبًا، أو أصغر من القيمة limit إن كان ...

التابع Math.acos‎ في روبي

يحسب التابع acos معكوس جيب التمام (arc cosine) للعدد المعطى ويعيد قيمة من المجال ‎0..PI. مجال التعريف:‎[-1 ، 1] ‎. مجال النتائج:‎[0، PI] ‎. البنية العامة acos(x) → Float‎ المعاملات x‎ العدد الذي ستُطبَّق عليه العملية. القيمة المعادة يعاد عدد عشري يمثِّل قيمة معكوس جيب التمام (arc cosine) للعدد x المعطى. أمثلة مثال على استخدام التابع acos‎: Math.acos(0) == Math::PI/2 #=> true‎ انظر أيضا التابع acosh: يحسب معكوس جيب التمام القطعي للعدد المعطى. مصادر قسم التابع acos‎ في الصنف Math‎ في ...

التابع Math.asin‎ في روبي

يحسب التابع asin معكوس الجيب (arc sine) للعدد المعطى. يعيد عددًا من المجال ‎-PI/2..PI/2. مجال التعريف: ‎‎‎‎[-1 ، 1]‎. المجال المقابل: [‎-PI / 2، PI / 2]. البنية العامة asin(x) → Float‎ المعاملات x‎ العدد الذي ستُطبَّق عليه العملية. القيمة المعادة يعاد عدد عشري يمثِّل قيمة معكوس الجيب (arc sine) للعدد x المعطى. أمثلة مثال على استخدام التابع asin‎: Math.asin(1) == Math::PI/2 #=> true‎ انظر أيضا التابع acosh: يحسب معكوس جيب التمام القطعي. التابع asinh: يحسب معكوس الجيب القطعي (inverse hyperbolic sine). ...

 التابع Complex.phase في روبي

يعيد التابع ‎phase الجزء الزاوي (الزاوية θ) للشكل القطبي من العدد العقدي الذي استُدعي معه. البنية العامة phase → float القيمة المعادة يعاد عدد عشري يمثِّل الجزء الزاوي (الزاوية θ) للشكل القطبي من العدد العقدي المعطى أمثلة أمثلة عن استخدام التابع ‎phase: Complex.polar(3, Math::PI/2).phase #=> 1.5707963267948966 انظر أيضًا التابع ‎magnitude: يعيد الجزء المطلق (الطويلة r) للشكل القطبي من العدد العقدي.  التابع ‎numerator: يعيد بسط العدد العقدي الكسري.  التابع ‎real: يعيد الجزء الحقيقي للعدد العقدي.  التابع imag: يعيد الجزء التخيلي للعدد ...

التابع Complex.angle في روبي

يحسب التابع ‎angle الجزء الزاوي (الزاوية θ) للشكل القطبي من العدد العقدي الذي استدعي معه. البنية العامة angle → float القيمة المعادة يعاد الجزء الزاوي (الزاوية θ) للشكل القطبي للعدد العقدي المعطى. أمثلة أمثلة عن استخدام التابع ‎angle: Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966 انظر أيضًا التابع arg: يعيد الجزء الزاوي (الزاوية θ) للشكل القطبي من العدد العقدي الذي استدعي معه. التابع abs2: يعيد مربع الطويلة (r2) للعدد العقدي الذي استدعي معه. التابع abs: يعيد الطويلة (r) للعدد العقدي بشكله القطبي الذي استدعي معه ...

التابع Complex.arg في روبي

يعيد التابع ‎arg الجزء الزاوي (الزاوية θ) للشكل القطبي من العدد العقدي الذي استدعي معه. البنية العامة arg → float القيمة المعادة يعاد الجزء الزاوي (الزاوية θ) للشكل القطبي للعدد العقدي المعطى. أمثلة أمثلة عن استخدام التابع ‎arg: Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966 انظر أيضًا التابع angle: يعيد الجزء الزاوي (الزاوية θ) للشكل القطبي من العدد العقدي الذي استدعي معه. التابع abs2: يعيد مربع الطويلة (r2) للعدد العقدي الذي استدعي معه. التابع abs: يعيد القيمة المطلقة للعدد العقدي الذي استدعي معه. مصادر قسم ...

التابع Complex.quo في روبي

يجري التابع ‎quo عملية القسمة على الأعداد العقدية. البنية العامة cmp / numeric → complex quo(numeric) → complex المعاملات cmp عدد عقدي يمثِّل الطرف الأول في عملية القسمة. numeric عدد عقدي أو غير عقدي يمثِّل الطرف الثاني في عملية القسمة. القيمة المعادة يعاد عدد عقدي يمثِّل ناتج عملية القسمة بين العددين cmp و numeric. أمثلة أمثلة عن استخدام التابع quo: Complex.polar(3, Math::PI/2).quo(3) ; #=> (0.0+1/1i) Complex(-2, 9).quo(Complex(-9, 2)) ; #=> (36/85-77/85i) انظر أيضًا المعامل ‎/: ...

التابع Integer.digits‎ في روبي

يفكك التابع digits‎ العدد الذي استٌدعي معه عبر تقسيم الأرقام التي تكوّنه من اليسار إلى اليمين، بحيث تكون أصغر من الوسيط الممرر إليه ثم يضعها في مصفوفة، مع وضع الرقم الأقل أهمية (least significant digit) في بداية المصفوفة. البنية العامة digits → array digits(base) → array‎ المعاملات base‎ عدد صحيح يمثل الأساس. يجب أن تكون قيمته أكبر من أو تساوي 2. القيمة الافتراضية: 10. القيمة المعادة تعاد مصفوفة تضم ناتج تفكيك العدد الذي استٌدعي معه. أمثلة مثال على ...

التابع Integer.sqrt‎ في روبي

يعيد التابع sqrt‎ الجذر التربيعي الصحيح للعدد الصحيح الموجب المُمرر إليه. يكافئ التابع sqrt‎ الاستدعاء Math.sqrt(n).floor باستثناء أنّ نتيجة الاستدعاء الأخير قد تكون مختلفة عن القيمة الصحيحة بسبب محدودية الدقة في العمليات الحسابية التي تُجرى على الأعداد العشرية (floating point arithmetic). Integer.sqrt(10**46) #=> 100000000000000000000000 Math.sqrt(10**46).floor #=> 99999999999999991611392 (!) البنية العامة sqrt(n) → integer إن لم يكن العدد المُعطى صحيحًا، فسيُحوّل أولًا إلى عدد صحيح، أما إن كان سالبًا فسيُطلق الخطأ Math::DomainError. المعاملات n عدد صحيح ...

Math.LOG10E

الخاصية Math.LOG10E تُمثِّل اللوغاريتم العشري (ذو الأساس 10) للعدد E، ويساوي تقريبًا 0.434. Math.LOG10E = log10(e) ≈ 0.434 سمات الخاصية Math.LOG10E قابلة للكتابة لا قابلة للإحصاء لا قابلة للضبط لا الوصف لمّا كانت الخاصية LOG10E هي خاصيةٌ ساكنة (static property) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.LOG10E، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة الدالة الآتية تُعيد قيمة اللوغاريتم العشري للثابت الرياضي e: function getLog10e() { ...

Math.E

الخاصية Math.E تُمثِّل ثابت أولر (Euler) وهو أساس اللوغاريتم الطبيعي، e، ويساوي القيمة 2.718 تقريبًا. Math.E = e ≈ 2.718 سمات الخاصية Math.E قابلة للكتابة لا قابلة للإحصاء لا قابلة للضبط لا الوصف لمّا كانت الخاصية E هي خاصيةٌ ساكنة (static property) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.E، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة الدالة الآتية تُعيد قيمة الثابت الرياضي e: function getNapier() { ...

Math.SQRT2

الخاصية Math.SQRT2 تُمثِّل الجذر التربيعي للعدد 2، ويساوي تقريبًا 1.414. Math.SQRT2 = sqrt(2) ≈ 1.414 سمات الخاصية Math.SQRT2 قابلة للكتابة لا قابلة للإحصاء لا قابلة للضبط لا الوصف لمّا كانت الخاصية SQRT2 هي خاصيةٌ ساكنة (static property) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.SQRT2، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة الدالة الآتية تستخدم الثابت Math.SQRT2 لإعادة الجذر التربيعي للعدد 2: function getRoot2() { return ...

Math.LN2

الخاصية Math.LN2 تُمثِّل اللوغاريتم الطبيعي للعدد 2، ويساوي تقريبًا 0.693. Math.LN2 = ln(2) ≈ 0.693 سمات الخاصية Math.LN2 قابلة للكتابة لا قابلة للإحصاء لا قابلة للضبط لا الوصف لمّا كانت الخاصية LN2 هي خاصيةٌ ساكنة (static property) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.LN2، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة الدالة الآتية تُعيد قيمة اللوغاريتم الطبيعي للعدد 2: function getNatLog2() { return Math.LN2; } getNatLog2(); // ...

Math.LOG2E

الخاصية Math.LOG2E تُمثِّل اللوغاريتم الثنائي (ذو الأساس 2) للعدد E، ويساوي تقريبًا 1.443. Math.LOG2E = log2(e) ≈ 1.442 سمات الخاصية Math.LOG2E قابلة للكتابة لا قابلة للإحصاء لا قابلة للضبط لا الوصف لمّا كانت الخاصية LOG2E هي خاصيةٌ ساكنة (static property) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.LOG2E، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة الدالة الآتية تُعيد قيمة اللوغاريتم الثنائي للثابت الرياضي e: function getLog2e() { ...

Math.LN10

الخاصية Math.LN10 تُمثِّل اللوغاريتم الطبيعي للعدد 10، ويساوي تقريبًا 2.303. Math.LN10 = ln(10) ≈ 2.302 سمات الخاصية Math.LN10 قابلة للكتابة لا قابلة للإحصاء لا قابلة للضبط لا الوصف لمّا كانت الخاصية LN10 هي خاصيةٌ ساكنة (static property) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.LN10، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة الدالة الآتية تُعيد قيمة اللوغاريتم الطبيعي للعدد 10: function getNatLog10() { return Math.LN10; } getNatLog10(); // ...

Math.PI

الخاصية Math.PI تُمثِّل النسبة بين محيط الدائرة وقطرها، ويساوي تقريبًا 3.14159. Math.PI = π ≈ 3.14159 سمات الخاصية Math.PI قابلة للكتابة لا قابلة للإحصاء لا قابلة للضبط لا الوصف لمّا كانت الخاصية PI هي خاصيةٌ ساكنة (static property) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.PI، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة الدالة الآتية تستخدم الثابت Math.PI لحساب محيط دائرة بتمرير قيمة نصف قطرها: function calculateCircumference(radius) ...

Math.exp()‎

الدالة Math.exp()‎ تعيد القيمة ex، حيث x هو الوسيط المُمرَّر إلى الدالة، و e هو ثابت أولر (ويسمى أيضًا بالثابت النيبيري) وهو أساس اللوغاريتم الطبيعي. البنية العامة Math.exp(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة القيمة ex، حيث x هو الوسيط المُمرَّر إلى الدالة، و e هو ثابت أولر. الوصف لمّا كانت الدالة exp هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.exp(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر ...

Math.sin()‎

الدالة Math.sin()‎ تعيد جيب (sine) العدد المعطي. البنية العامة Math.sin(x) x العدد التي ستُجرى عليه العملية بواحدة الراديان. القيمة المعادة جيب (sine) العدد المعطي. الوصف الدالة Math.sin(x)‎ تُعيد قيمةً عدديةً بين -1 و 1، والتي تُمثِّل جيب (sine) الزاوية المعطية. لمّا كانت الدالة sin هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.sin(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة أمثلة عن استخدام ...

Math.SQRT1_2

الخاصية Math.SQRT1_2 تُمثِّل الجذر التربيعي للعدد 1/2، وبالتالي ناتج قسمة 1 على الجذر التربيعي للعدد 2، ويساوي تقريبًا 0.707. Math.SQRT1_2 = sqrt(1/2) = 1/sqrt(2) ≈ 0.707 سمات الخاصية Math.SQRT1_2 قابلة للكتابة لا قابلة للإحصاء لا قابلة للضبط لا الوصف لمّا كانت الخاصية SQRT1_2 هي خاصيةٌ ساكنة (static property) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.SQRT1_2، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة الدالة الآتية تستخدم الثابت ...

Math.cos()‎

الدالة Math.cos()‎ تعيد تجيب (cosine) العدد المعطي. البنية العامة Math.cos(x) x العدد التي ستُجرى عليه العملية بواحدة الراديان. القيمة المعادة تجيب (cosine) العدد المعطي. الوصف الدالة Math.cos(x)‎ تُعيد قيمةً عدديةً بين -1 و 1، والتي تُمثِّل تجيب (cosine) الزاوية المعطية. لمّا كانت الدالة cos هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.cos(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة أمثلة عن استخدام ...

التابع Object.each_object في روبي

يستدعي التابع each_object كتلةً محدَّدةً مرةً لكل كائنٍ نشطٍ (living object) أو غير مباشرٍ (nonimmediate object) في هذه العملية الحالية في روبي. إذا حُدِّدت الوحدة (module) المراد تنفيذ الكتلة عليها، فسيستدعي التابع الكتلة للأصناف أو الوحدات المماثلة لهذه الوحدة (أو لتلك التي تكون صنفًا فرعيًا منها). يُعيد التابع each_object عدد الكائنات التي عُثر عليها. لا تُعاد الكائنات المباشرة (مثل Fixnums، و Symbols، و true، و false، و nil) أبدًا. إذا لم تُعطَ أي كتلة إلى التابع each_object، فستُعاد نسخةٌ من ...

Math.expm1()‎

الدالة Math.expm1()‎ تعيد القيمة ex-1، حيث x هو الوسيط المُمرَّر إلى الدالة، و e هو ثابت أولر (ويسمى أيضًا بالثابت النيبيري) وهو أساس اللوغاريتم الطبيعي. البنية العامة Math.exp(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة القيمة ex-1، حيث x هو الوسيط المُمرَّر إلى الدالة، و e هو ثابت أولر. الوصف لمّا كانت الدالة expm1 هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.expm1(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر ...

Math.floor()‎

الدالة Math.floor()‎ تعيد أكبر عدد صحيح يكون مساويًا أو أصغر من العدد المعطي (أي التقريب إلى أصغر عدد صحيح). البنية العامة Math.floor(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة أكبر عدد صحيح يكون مساويًا أو أصغر من العدد المعطي. الوصف لمّا كانت الدالة floor هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.floor(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة أمثلة على ...

Math.log1p()‎

الدالة Math.log1p()‎ تعيد اللوغاريتم الطبيعي (loge) للقيمة 1 + x للعدد المعطي x. Math.log1p(x) = ln (1 + x) البنية العامة Math.log1p(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة اللوغاريتم الطبيعي (ذو الأساس e) للعدد المعطي + 1، وإذا كان العدد أصغر من -1 فستُعاد القيمة NaN. الوصف لمّا كانت الدالة log1p هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.log1p(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن ...

Math.sqrt()‎

الدالة Math.sqrt()‎ تعيد الجذر التربيعي للعدد، أي لو كانت قيمة الوسيط x أكبر أو تساوي الصفر، فإنَّ هذه الدالة ستُعيد القيمة y التي تكون أكبر أو تساوي الصفر والتي تُحقِّق المعادة y2 = x. البنية العامة Math.sqrt(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة الجذر التربيعي للعدد المعطي، وإذا كان العدد سالبًا فستُعاد القيمة NaN. الوصف إذا كانت قيمة الوسيط x سالبةً فستُعاد القيمة NaN. لمّا كانت الدالة sqrt هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك ...

Math.fround()‎

الدالة Math.fround()‎ تعيد أقرب تمثيل للعدد كعدد عشري بدقة أحادية (single precision). البنية العامة Math.fround(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة أقرب تمثيل للعدد كعدد عشري بدقة أحادية (single precision). الوصف لمّا كانت الدالة fround هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.fround(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة أمثلة عن استخدام الدالة Math.fround(x)‎: Math.fround(0); ...

Math.tan()‎

الدالة Math.tan()‎ تعيد ظل (tangent) العدد المعطي. البنية العامة Math.tan(x) x العدد التي ستُجرى عليه العملية بواحدة الراديان. القيمة المعادة ظل (tangent) العدد المعطي. الوصف الدالة Math.tan(x)‎ تُعيد قيمةً عدديةً، والتي تُمثِّل ظل (tangent) الزاوية المعطية. لمّا كانت الدالة tan هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.tan(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة أمثلة عن استخدام الدالة Math.tan(x)‎: Math.tan(1); // ...

Math.abs()‎

الدالة Math.abs()‎ تُعيد القيمة المطلقة للعدد، أي |x|، وتساوي x إذا كانت قيمة x أكبر من 0، وتساوي 0 إذا كانت قيمة x تساوي 0، وتساوي ‎-x إذا كانت قيمة x أصغر من الصفر؛ أي في جميع الحالات ستكون القيمة المُعادة هي قيمة موجبة. البنية العامة Math.abs(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة القيمة المطلقة للعدد المُعطى. الوصف لمّا كانت الدالة abs هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.abs(x)‎، إذ لا ...

Math.acos()‎

الدالة Math.acos()‎ معكوس التجيب (arccosine) للعدد بواحدة الراديان. أي لو أعادت هذه الدالة العدد y الذي ينتمي إلى المجال [0 ; π] فسيكون التعبير الرياضي cos(y) = x محققًا. البنية العامة Math.acos(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة معكوس التجيب (arccosine) للعدد بواحدة الراديان إذا كان بين -1 و 1، وإلا فستُعاد القيمة NaN. الوصف الدالة Math.acos(x)‎ تُعيد قيمةً عدديةً بين 0 و π إذا كانت قيمة x بين -1 و 1؛ وإذا كانت قيمة x خارج ذاك المجال، ...

Math.tanh()‎

الدالة Math.tanh()‎ تعيد الظل القطعي (hyperbolic tangent) للعدد المعطي، والذي يمكن التعبير عنه باستخدام عدد أولر (الثابت e): Math.tanh(x) = (e^x - e^-x) / (e^x + e^-x) = (e^2x - 1) / (e^2x + 1) البنية العامة Math.tanh(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة الظل القطعي (hyperbolic sine) للعدد المعطي. الوصف لمّا كانت الدالة tanh هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.tanh(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص ...

Math.sinh()‎

الدالة Math.sinh()‎ تعيد الجيب القطعي (hyperbolic sine) العدد المعطي، والذي يمكن التعبير عنه باستخدام عدد أولر (الثابت e): Math.sinh(x) = (e^x - e^-x) / 2 البنية العامة Math.sinh(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة الجيب القطعي (hyperbolic sine) للعدد المعطي. الوصف لمّا كانت الدالة sinh هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.sinh(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة ...

Math.atan()‎

الدالة Math.atan()‎ تعيد معكوس الظل (arctangent) للعدد بواحدة الراديان. أي لو أعادت هذه الدالة العدد y الذي ينتمي إلى المجال [-π/2 ; π/2] فسيكون التعبير الرياضي tan(y) = x محققًا. البنية العامة Math.atan(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة معكوس الظل (arctangent) للعدد بواحدة الراديان. الوصف الدالة Math.atan(x)‎ تُعيد قيمةً عدديةً بين -π/2 و π/2. لمّا كانت الدالة atan هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.atan(x)‎، إذ لا تستطيع استخدامها كجزء من ...

Math.cosh()‎

الدالة Math.cosh()‎ تعيد التجيب القطعي (hyperbolic cosine) العدد المعطي، والذي يمكن التعبير عنه باستخدام عدد أولر (الثابت e): Math.cosh(x) = (e^x + e^-x) / 2 البنية العامة Math.cosh(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة التجيب القطعي (hyperbolic cosine) للعدد المعطي. الوصف لمّا كانت الدالة cosh هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.cosh(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة ...

Math.ceil()‎

الدالة Math.ceil()‎ تعيد أصغر عدد صحيح يكون مساويًا أو أكبر من العدد المعطي (أي التقريب إلى أكبر عدد صحيح). البنية العامة Math.ceil(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة أصغر عدد صحيح يكون مساويًا أو أكبر من العدد المعطي. الوصف لمّا كانت الدالة ceil هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.ceil(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة أمثلة على ...

Math.log10()‎

الدالة Math.log10()‎ تعيد اللوغاريتم العشري (ذو الأساس 10) للعدد المعطي، أي لو أعادت هذه الدالة القيمة y فسيكون التعبير الرياضي 10y = x محققًا. البنية العامة Math.log10(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة اللوغاريتم العشري (ذو الأساس 10) للعدد المعطي، وإذا كان العدد سالبًا فستُعاد القيمة NaN. الوصف إذا كانت قيمة الوسيط x سالبةً، فستُعيد هذه الدالة القيمة NaN دومًا. لمّا كانت الدالة log10 هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.log10(x)‎، ...

Math.log2()‎

الدالة Math.log2()‎ تعيد اللوغاريتم الثنائي (ذو الأساس 2) للعدد المعطي، أي لو أعادت هذه الدالة القيمة y فسيكون التعبير الرياضي 2y = x محققًا. البنية العامة Math.log2(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة اللوغاريتم الثنائي (ذو الأساس 2) للعدد المعطي، وإذا كان العدد سالبًا فستُعاد القيمة NaN. الوصف إذا كانت قيمة الوسيط x سالبةً، فستُعيد هذه الدالة القيمة NaN دومًا. لمّا كانت الدالة log2 هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math، فيجب عليك استخدامها دومًا بالشكل Math.log2(x)‎، ...

Math.atanh()‎

الدالة Math.atanh()‎ معكوس الظل القطعي (hyperbolic arctangent) للعدد. أي لو أعادت هذه الدالة العدد y فسيكون التعبير الرياضي tanh(y) = x محققًا. البنية العامة Math.atanh(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة معكوس التجيب القطعي (hyperbolic arctangent) للعدد. الوصف لمّا كانت الدالة atanh هي دالةٌ ساكنة (static method) تابعةٌ للكائن Math فيجب عليك استخدامها دومًا بالشكل Math.atanh(x)‎، إذ لا تستطيع استخدامها كجزء من كائن Math خاص بك (تذكر أنَّ الكائن Math ليس له دالةٌ بانية). أمثلة لاحظ أنَّ الدالة ...

Math.asin()‎

الدالة Math.asin()‎ معكوس الجيب (arcsine) للعدد بواحدة الراديان. أي لو أعادت هذه الدالة العدد y الذي ينتمي إلى المجال [-π/2 ; π/2] فسيكون التعبير الرياضي sin(y) = x محققًا. البنية العامة Math.asin(x) x العدد التي ستُجرى عليه العملية. القيمة المعادة معكوس الجيب (arcsine) للعدد بواحدة الراديان إذا كان بين -1 و 1، وإلا فستُعاد القيمة NaN. الوصف الدالة Math.asin(x)‎ تُعيد قيمةً عدديةً بين -π/2 و π/2 إذا كانت قيمة x بين -1 و 1؛ وإذا كانت قيمة x خارج ذاك المجال، ...

عرض (50 السابقة | 50 التالية) (20 | 50 | 100 | 250 | 500).